» Articles » PMID: 36703329

Bulk and Local Structures of Metal-organic Frameworks Unravelled by High-resolution Electron Microscopy

Overview
Journal Commun Chem
Publisher Springer Nature
Specialty Chemistry
Date 2023 Jan 27
PMID 36703329
Authors
Affiliations
Soon will be listed here.
Abstract

The periodic bulk structures of metal-organic frameworks (MOFs) can be solved by diffraction-based techniques; however, their non-periodic local structures-such as crystal surfaces, grain boundaries, defects, and guest molecules-have long been elusive due to a lack of suitable characterization tools. Recent advances in (scanning) transmission electron microscopy ((S)TEM) has made it possible to probe the local structures of MOFs at atomic resolution. In this article, we discuss why high-resolution (S)TEM of MOFs is challenging and how the new low-dose techniques overcome this challenge, and we review various MOF structural features observed by (S)TEM and important insights gained from these observations. Our discussions focus on real-space imaging, excluding other TEM-related characterization techniques (e.g. electron diffraction and spectroscopy).

Citing Articles

Atomically resolved imaging of radiation-sensitive metal-organic frameworks via electron ptychography.

Li G, Xu M, Tang W, Liu Y, Chen C, Zhang D Nat Commun. 2025; 16(1):914.

PMID: 39837871 PMC: 11750992. DOI: 10.1038/s41467-025-56215-z.


Unravelling nonclassical beam damage mechanisms in metal-organic frameworks by low-dose electron microscopy.

Xu X, Xia L, Zheng C, Liu Y, Yu D, Li J Nat Commun. 2025; 16(1):261.

PMID: 39747904 PMC: 11695741. DOI: 10.1038/s41467-024-55632-w.


In Situ Transmission Electron Microscopy of Electrocatalyst Materials: Proposed Workflows, Technical Advances, Challenges, and Lessons Learned.

Abdellah A, Salem K, DiCecco L, Ismail F, Rakhsha A, Grandfield K Small Methods. 2024; 9(1):e2400851.

PMID: 39707656 PMC: 11740959. DOI: 10.1002/smtd.202400851.


Unravelling complex mechanisms in materials processes with cryogenic electron microscopy.

Lee M, Jeon Y, Kim S, Jung I, Kang S, Jeong S Chem Sci. 2024; 16(3):1017-1035.

PMID: 39697416 PMC: 11651391. DOI: 10.1039/d4sc05188b.


Low-dose electron microscopy imaging for beam-sensitive metal-organic frameworks.

Liang Y, Zhou Y J Appl Crystallogr. 2024; 57(Pt 5):1270-1281.

PMID: 39387073 PMC: 11460399. DOI: 10.1107/S1600576724007192.


References
1.
Cliffe M, Wan W, Zou X, Chater P, Kleppe A, Tucker M . Correlated defect nanoregions in a metal-organic framework. Nat Commun. 2014; 5:4176. PMC: 4730551. DOI: 10.1038/ncomms5176. View

2.
Batson P, Dellby N, Krivanek O . Sub-ångstrom resolution using aberration corrected electron optics. Nature. 2002; 418(6898):617-20. DOI: 10.1038/nature00972. View

3.
Leus K, Dendooven J, Tahir N, Ramachandran R, Meledina M, Turner S . Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst. Nanomaterials (Basel). 2017; 6(3). PMC: 5302512. DOI: 10.3390/nano6030045. View

4.
Dissegna S, Epp K, Heinz W, Kieslich G, Fischer R . Defective Metal-Organic Frameworks. Adv Mater. 2018; 30(37):e1704501. DOI: 10.1002/adma.201704501. View

5.
Liu L, Wang N, Zhu C, Liu X, Zhu Y, Guo P . Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSM-5. Angew Chem Int Ed Engl. 2019; 59(2):819-825. DOI: 10.1002/anie.201909834. View