» Articles » PMID: 17681483

GPU Based Real-time Instrument Tracking with Three-dimensional Ultrasound

Overview
Journal Med Image Anal
Publisher Elsevier
Specialty Radiology
Date 2007 Aug 8
PMID 17681483
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Real-time three-dimensional ultrasound enables new intracardiac surgical procedures, but the distorted appearance of instruments in ultrasound poses a challenge to surgeons. This paper presents a detection technique that identifies the position of the instrument within the ultrasound volume. The algorithm uses a form of the generalized Radon transform to search for long straight objects in the ultrasound image, a feature characteristic of instruments and not found in cardiac tissue. When combined with passive markers placed on the instrument shaft, the full position and orientation of the instrument is found in 3D space. This detection technique is amenable to rapid execution on the current generation of personal computer graphics processor units (GPU). Our GPU implementation detected a surgical instrument in 31 ms, sufficient for real-time tracking at the 25 volumes per second rate of the ultrasound machine. A water tank experiment found instrument orientation errors of 1.1 degrees and tip position errors of less than 1.8mm. Finally, an in vivo study demonstrated successful instrument tracking inside a beating porcine heart.

Citing Articles

Shape Reconstruction Processes for Interventional Application Devices: State of the Art, Progress, and Future Directions.

Sahu S, Sozer C, Rosa B, Tamadon I, Renaud P, Menciassi A Front Robot AI. 2021; 8:758411.

PMID: 34869615 PMC: 8640970. DOI: 10.3389/frobt.2021.758411.


Automatic needle detection using improved random sample consensus in CT image-guided lung interstitial brachytherapy.

Zheng Y, Jiang S, Yang Z, Wei L J Appl Clin Med Phys. 2021; 22(4):121-131.

PMID: 33764659 PMC: 8035571. DOI: 10.1002/acm2.13231.


Fully automatic catheter segmentation in MRI with 3D convolutional neural networks: application to MRI-guided gynecologic brachytherapy.

Zaffino P, Pernelle G, Mastmeyer A, Mehrtash A, Zhang H, Kikinis R Phys Med Biol. 2019; 64(16):165008.

PMID: 31272095 PMC: 6726393. DOI: 10.1088/1361-6560/ab2f47.


Model predictive control of a robotically actuated delivery sheath for beating heart compensation.

Vrooijink G, Denasi A, Grandjean J, Misra S Int J Rob Res. 2019; 36(2):193-209.

PMID: 30814767 PMC: 6368306. DOI: 10.1177/0278364917691113.


Automatic Needle Segmentation and Localization in MRI With 3-D Convolutional Neural Networks: Application to MRI-Targeted Prostate Biopsy.

Mehrtash A, Ghafoorian M, Pernelle G, Ziaei A, Heslinga F, Tuncali K IEEE Trans Med Imaging. 2018; 38(4):1026-1036.

PMID: 30334789 PMC: 6450731. DOI: 10.1109/TMI.2018.2876796.


References
1.
Lindseth F, Tangen G, Lango T, Bang J . Probe calibration for freehand 3-D ultrasound. Ultrasound Med Biol. 2003; 29(11):1607-23. DOI: 10.1016/s0301-5629(03)01012-3. View

2.
Ding M, Fenster A . A real-time biopsy needle segmentation technique using Hough transform. Med Phys. 2003; 30(8):2222-33. DOI: 10.1118/1.1591192. View

3.
Draper K, Blake C, Gowman L, Downey D, Fenster A . An algorithm for automatic needle localization in ultrasound-guided breast biopsies. Med Phys. 2000; 27(8):1971-9. DOI: 10.1118/1.1287437. View

4.
Murkin J, Boyd W, Ganapathy S, Adams S, Peterson R . Beating heart surgery: why expect less central nervous system morbidity?. Ann Thorac Surg. 1999; 68(4):1498-501. DOI: 10.1016/s0003-4975(99)00953-4. View

5.
Cannon J, Stoll J, Salgo I, Knowles H, Howe R, Dupont P . Real-time three-dimensional ultrasound for guiding surgical tasks. Comput Aided Surg. 2004; 8(2):82-90. DOI: 10.3109/10929080309146042. View