Cifuente J, Colleoni C, Kalscheuer R, Guerin M
Chem Rev. 2024; 124(8):4863-4934.
PMID: 38606812
PMC: 11046441.
DOI: 10.1021/acs.chemrev.3c00811.
Han X, DAngelo C, Otamendi A, Cifuente J, de Astigarraga E, Ochoa-Lizarralde B
mBio. 2023; 14(4):e0041423.
PMID: 37409813
PMC: 10470519.
DOI: 10.1128/mbio.00414-23.
Aiman S, Alzahrani A, Ali F, Abida , Imran M, Kamal M
Microorganisms. 2023; 11(1).
PMID: 36677520
PMC: 9860978.
DOI: 10.3390/microorganisms11010228.
Muhlberg L, Alarcin T, Maass T, Creutznacher R, Kuchler R, Mallagaray A
J Biomol NMR. 2022; 76(3):59-74.
PMID: 35397749
PMC: 9247001.
DOI: 10.1007/s10858-022-00394-0.
Liu S, Zhong H, Wang Q, Liu C, Li T, Peng Z
Front Plant Sci. 2021; 12:681719.
PMID: 34177996
PMC: 8222925.
DOI: 10.3389/fpls.2021.681719.
Immobilization of the Highly Active UDP-Glucose Pyrophosphorylase From Provides a Highly Efficient Biocatalyst for the Production of UDP-Glucose.
Kumpf A, Kowalczykiewicz D, Szymanska K, Mehnert M, Bento I, Lochowicz A
Front Bioeng Biotechnol. 2020; 8:740.
PMID: 32714915
PMC: 7343719.
DOI: 10.3389/fbioe.2020.00740.
Virtual Screening and the In Vitro Assessment of the Antileishmanial Activity of Lignans.
Maia M, Raimundo E Silva J, de Lima Nunes T, de Sousa J, Rodrigues G, Monteiro A
Molecules. 2020; 25(10).
PMID: 32408657
PMC: 7288103.
DOI: 10.3390/molecules25102281.
Two Homologous Enzymes of the GalU Family in 1CP-GalU1 and GalU2.
Kumpf A, Partzsch A, Pollender A, Bento I, Tischler D
Int J Mol Sci. 2019; 20(22).
PMID: 31752319
PMC: 6888414.
DOI: 10.3390/ijms20225809.
Identification of UDP-Sugar Pyrophosphorylase Inhibitors Using Biosensor-Based Small Molecule Fragment Library Screening.
Prakash O, Fuhring J, Post J, Shepherd S, Eadsforth T, Gray D
Molecules. 2019; 24(5).
PMID: 30871023
PMC: 6429087.
DOI: 10.3390/molecules24050996.
UDP-Sugar Producing Pyrophosphorylases: Distinct and Essential Enzymes With Overlapping Substrate Specificities, Providing Precursors for Glycosylation Reactions.
Decker D, Kleczkowski L
Front Plant Sci. 2019; 9:1822.
PMID: 30662444
PMC: 6329318.
DOI: 10.3389/fpls.2018.01822.
Crystal structure and insights into the oligomeric state of UDP-glucose pyrophosphorylase from sugarcane.
Cotrim C, Soares J, Kobe B, Menossi M
PLoS One. 2018; 13(3):e0193667.
PMID: 29494650
PMC: 5832301.
DOI: 10.1371/journal.pone.0193667.
Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases.
Decker D, Kleczkowski L
Front Plant Sci. 2017; 8:1610.
PMID: 28970843
PMC: 5609113.
DOI: 10.3389/fpls.2017.01610.
Allosteric Control of Substrate Specificity of the ADP-Glucose Pyrophosphorylase.
Ebrecht A, Solamen L, Hill B, Iglesias A, Olsen K, Ballicora M
Front Chem. 2017; 5:41.
PMID: 28674689
PMC: 5474683.
DOI: 10.3389/fchem.2017.00041.
On the Ancestral UDP-Glucose Pyrophosphorylase Activity of GalF from Escherichia coli.
Ebrecht A, Orlof A, Sasoni N, Figueroa C, Iglesias A, Ballicora M
Front Microbiol. 2015; 6:1253.
PMID: 26617591
PMC: 4643126.
DOI: 10.3389/fmicb.2015.01253.
Depletion of UDP-Glucose and UDP-Galactose Using a Degron System Leads to Growth Cessation of Leishmania major.
Damerow S, Hoppe C, Bandini G, Zarnovican P, Buettner F, Buettner F
PLoS Negl Trop Dis. 2015; 9(11):e0004205.
PMID: 26529232
PMC: 4631452.
DOI: 10.1371/journal.pntd.0004205.
A quaternary mechanism enables the complex biological functions of octameric human UDP-glucose pyrophosphorylase, a key enzyme in cell metabolism.
Fuhring J, Cramer J, Schneider J, Baruch P, Gerardy-Schahn R, Fedorov R
Sci Rep. 2015; 5:9618.
PMID: 25860585
PMC: 5381698.
DOI: 10.1038/srep09618.
Oligomerization, membrane association, and in vivo phosphorylation of sugarcane UDP-glucose pyrophosphorylase.
Soares J, Gentile A, Scorsato V, Lima A, Kiyota E, Dos Santos M
J Biol Chem. 2014; 289(48):33364-77.
PMID: 25320091
PMC: 4246093.
DOI: 10.1074/jbc.M114.590125.
Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus.
Payyavula R, Tschaplinski T, Jawdy S, Sykes R, Tuskan G, Kalluri U
BMC Plant Biol. 2014; 14:265.
PMID: 25287590
PMC: 4197241.
DOI: 10.1186/s12870-014-0265-8.
Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites.
Magalhaes R, Duarte M, Mattos E, Martins V, Lage P, Chavez-Fumagalli M
PLoS Negl Trop Dis. 2014; 8(4):e2764.
PMID: 24699271
PMC: 3974679.
DOI: 10.1371/journal.pntd.0002764.
In-silico Leishmania target selectivity of antiparasitic terpenoids.
Ogungbe I, Setzer W
Molecules. 2013; 18(7):7761-847.
PMID: 23823876
PMC: 6270436.
DOI: 10.3390/molecules18077761.