» Articles » PMID: 25860585

A Quaternary Mechanism Enables the Complex Biological Functions of Octameric Human UDP-glucose Pyrophosphorylase, a Key Enzyme in Cell Metabolism

Overview
Journal Sci Rep
Specialty Science
Date 2015 Apr 11
PMID 25860585
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens.

Citing Articles

Identification and characterization of the functional tetrameric UDP-glucose pyrophosphorylase from .

Ramon Roth I, Kats P, Fiebig T, Routier F, Fedorov R, Dirr L mBio. 2024; 16(2):e0207124.

PMID: 39704542 PMC: 11796359. DOI: 10.1128/mbio.02071-24.


Effects of N361 Glycosylation on Epidermal Growth Factor Receptor Biological Function.

Lam D, Arroyo B, Liberchuk A, Wolfe A bioRxiv. 2024; .

PMID: 39071333 PMC: 11275927. DOI: 10.1101/2024.07.12.603279.


Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes.

Cifuente J, Colleoni C, Kalscheuer R, Guerin M Chem Rev. 2024; 124(8):4863-4934.

PMID: 38606812 PMC: 11046441. DOI: 10.1021/acs.chemrev.3c00811.


Tetramerization is essential for the enzymatic function of the virulence factor UDP-glucose pyrophosphorylase.

Dirr L, Cleeves S, Ramon Roth I, Li L, Fiebig T, Ve T mBio. 2024; 15(4):e0211423.

PMID: 38470050 PMC: 11005391. DOI: 10.1128/mbio.02114-23.


Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction.

Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso K Chemistry. 2023; 30(8):e202303047.

PMID: 37966101 PMC: 10922586. DOI: 10.1002/chem.202303047.


References
1.
Korkhin Y, Kalb Gilboa A, Peretz M, Bogin O, Burstein Y, Frolow F . Oligomeric integrity--the structural key to thermal stability in bacterial alcohol dehydrogenases. Protein Sci. 1999; 8(6):1241-9. PMC: 2144363. DOI: 10.1110/ps.8.6.1241. View

2.
Flores-Diaz M, Higuita J, Florin I, Okada T, Pollesello P, Bergman T . A cellular UDP-glucose deficiency causes overexpression of glucose/oxygen-regulated proteins independent of the endoplasmic reticulum stress elements. J Biol Chem. 2004; 279(21):21724-31. DOI: 10.1074/jbc.M312791200. View

3.
Abraham H, Howell R . Human hepatic uridine diphosphate galactose pyrophosphorylase. Its characterization and activity during development. J Biol Chem. 1969; 244(4):545-50. View

4.
Yu Q, Zheng X . The crystal structure of human UDP-glucose pyrophosphorylase reveals a latch effect that influences enzymatic activity. Biochem J. 2011; 442(2):283-91. DOI: 10.1042/BJ20111598. View

5.
Lai K, Langley S, Khwaja F, Schmitt E, Elsas L . GALT deficiency causes UDP-hexose deficit in human galactosemic cells. Glycobiology. 2003; 13(4):285-94. DOI: 10.1093/glycob/cwg033. View