» Articles » PMID: 16174769

Repair of Methylation Damage in DNA and RNA by Mammalian AlkB Homologues

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2005 Sep 22
PMID 16174769
Citations 74
Authors
Affiliations
Soon will be listed here.
Abstract

Human and Escherichia coli derivatives of AlkB enzymes remove methyl groups from 1-methyladenine and 3-methylcytosine in nucleic acids via an oxidative mechanism that releases the methyl group as formaldehyde. In this report, we demonstrate that the mouse homologues of the alpha-ketoglutarate Fe(II) oxygen-dependent enzymes mAbh2 and Abh3 have activities comparable to those of their human counterparts. The mAbh2 and mAbh3 release modified bases from both DNA and RNA. Comparison of the activities of the homogenous ABH2 and ABH3 enzymes demonstrate that these activities are shared by both sets of enzymes. An assay for the detection of alpha-ketoglutarate Fe(II) dioxygenase activity using an oligodeoxyribonucleotide with a unique modification shows activity for all four enzymes studied and a loss of activity for eight mutant proteins. Steady-state kinetics for removal of methyl groups from DNA substrates indicates that the reactions of the proteins are close to the diffusion limit. Moreover, mAbh2 or mAbh3 activity increases survival in a strain defective in alkB. The mRNAs of AHB2 and ABH3 are expressed most in testis for ABH2 and ABH3, whereas expression of the homologous mouse genes is different. The mAbh3 is strongly expressed in testis, whereas highest expression of mAbh2 is in heart. Other purified human AlkB homologue proteins ABH4, ABH6, and ABH7 do not manifest activity. The demonstration of mAbh2 and mAbh3 activities and their distributions provide data on these mammalian homologues of AlkB that can be used in animal studies.

Citing Articles

Evaluation of ALKBH2 and ALKBH3 gene regulation in patients with adult T-cell leukemia/lymphoma.

Wada Y, Naito T, Fukushima T, Saito M Virol J. 2024; 21(1):316.

PMID: 39633427 PMC: 11619432. DOI: 10.1186/s12985-024-02590-w.


RNA or DNA? Revisiting the Chemical Nature of the Cenancestral Genome.

Cottom-Salas W, Becerra A, Lazcano A J Mol Evol. 2024; 92(5):647-658.

PMID: 39145798 PMC: 11458739. DOI: 10.1007/s00239-024-10194-9.


Kinetic Studies on the 2-Oxoglutarate/Fe(II)-Dependent Nucleic Acid Modifying Enzymes from the AlkB and TET Families.

Peng Z, Ma J, Christov C, Karabencheva-Christova T, Lehnert N, Li D DNA (Basel). 2024; 3(2):65-84.

PMID: 38698914 PMC: 11065319. DOI: 10.3390/dna3020005.


The Role of Key Amino Acids of the Human Fe(II)/2OG-Dependent Dioxygenase ALKBH3 in Structural Dynamics and Repair Activity toward Methylated DNA.

Kanazhevskaya L, Gorbunov A, Lukina M, Smyshliaev D, Zhdanova P, Lomzov A Int J Mol Sci. 2024; 25(2).

PMID: 38256217 PMC: 10816986. DOI: 10.3390/ijms25021145.


The Molecular Basis of Human ALKBH3 Mediated RNA N -methyladenosine (m A) Demethylation.

Zhang L, Duan H, Paduch M, Hu J, Zhang C, Mu Y Angew Chem Int Ed Engl. 2023; 63(7):e202313900.

PMID: 38158383 PMC: 11846542. DOI: 10.1002/anie.202313900.