» Articles » PMID: 15965475

An Integrative Genomics Approach to Infer Causal Associations Between Gene Expression and Disease

Abstract

A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integrates DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expression traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene-perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.

Citing Articles

A multiomic network approach uncovers disease modifying mechanisms of inborn errors of metabolism.

Bender A, Ranea-Robles P, Williams E, Williams E, Mirzaian M, Heimel J bioRxiv. 2025; .

PMID: 40027804 PMC: 11870498. DOI: 10.1101/2025.02.19.639093.


Predicting the genetic component of gene expression using gene regulatory networks.

Mohammad G, Michoel T Bioinform Adv. 2024; 4(1):vbae180.

PMID: 39717201 PMC: 11665636. DOI: 10.1093/bioadv/vbae180.


Revealing host genome-microbiome networks underlying feed efficiency in dairy cows.

Martinez-Boggio G, Monteiro H, Lima F, Figueiredo C, Bisinotto R, Santos J Sci Rep. 2024; 14(1):26060.

PMID: 39472728 PMC: 11522680. DOI: 10.1038/s41598-024-77782-z.


Heterogeneous biomedical entity representation learning for gene-disease association prediction.

Meng Z, Liu S, Liang S, Jani B, Meng Z Brief Bioinform. 2024; 25(5).

PMID: 39154194 PMC: 11330343. DOI: 10.1093/bib/bbae380.


A twin analysis to estimate genetic and environmental factors contributing to variation in weighted gene co-expression network module eigengenes.

Gillespie N, Bell T, Hearn G, Hess J, Tsuang M, Lyons M Am J Med Genet B Neuropsychiatr Genet. 2024; 198(1):e33003.

PMID: 39126209 PMC: 11778624. DOI: 10.1002/ajmg.b.33003.


References
1.
Masuzaki H, Paterson J, Shinyama H, Morton N, Mullins J, Seckl J . A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001; 294(5549):2166-70. DOI: 10.1126/science.1066285. View

2.
Sillanpaa M, Corander J . Model choice in gene mapping: what and why. Trends Genet. 2002; 18(6):301-7. DOI: 10.1016/S0168-9525(02)02688-4. View

3.
Hughes T, Mao M, Jones A, Burchard J, Marton M, Shannon K . Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol. 2001; 19(4):342-7. DOI: 10.1038/86730. View

4.
Schupf N, Williams C, Hugli T, Cox J . Psychopharmacological activity of anaphylatoxin C3a in rat hypothalamus. J Neuroimmunol. 1983; 5(3):305-16. DOI: 10.1016/0165-5728(83)90051-6. View

5.
He Y, Dai H, Schadt E, Cavet G, Edwards S, Stepaniants S . Microarray standard data set and figures of merit for comparing data processing methods and experiment designs. Bioinformatics. 2003; 19(8):956-65. DOI: 10.1093/bioinformatics/btg126. View