» Articles » PMID: 37604891

Genetic Analysis of Blood Molecular Phenotypes Reveals Common Properties in the Regulatory Networks Affecting Complex Traits

Abstract

We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue.

Citing Articles

Cross-cohort analysis of expression and splicing quantitative trait loci in TOPMed.

Orchard P, Blackwell T, Kachuri L, Castaldi P, Cho M, Christenson S medRxiv. 2025; .

PMID: 40034763 PMC: 11875316. DOI: 10.1101/2025.02.19.25322561.


Role of human plasma metabolites in prediabetes and type 2 diabetes from the IMI-DIRECT study.

Sharma S, Dong Q, Haid M, Adam J, Bizzotto R, Fernandez-Tajes J Diabetologia. 2024; 67(12):2804-2818.

PMID: 39349772 PMC: 11604760. DOI: 10.1007/s00125-024-06282-6.


Statistically and functionally fine-mapped blood eQTLs and pQTLs from 1,405 humans reveal distinct regulation patterns and disease relevance.

Wang Q, Hasegawa T, Namkoong H, Saiki R, Edahiro R, Sonehara K Nat Genet. 2024; 56(10):2054-2067.

PMID: 39317738 PMC: 11525184. DOI: 10.1038/s41588-024-01896-3.


European and African-specific plasma protein-QTL and metabolite-QTL analyses identify ancestry-specific T2D effector proteins and metabolites.

Cruchaga C, Yang C, Gorijala P, Timsina J, Wang L, Liu M Res Sq. 2024; .

PMID: 39108494 PMC: 11302687. DOI: 10.21203/rs.3.rs-3617016/v1.


Instrumental variable and colocalization analyses identify endotrophin and HTRA1 as potential therapeutic targets for coronary artery disease.

Lee P, Jung I, Thussu S, Patel V, Wagoner R, Burks K iScience. 2024; 27(7):110104.

PMID: 38989470 PMC: 11233907. DOI: 10.1016/j.isci.2024.110104.


References
1.
Wang D, Eraslan B, Wieland T, Hallstrom B, Hopf T, Zolg D . A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol Syst Biol. 2019; 15(2):e8503. PMC: 6379049. DOI: 10.15252/msb.20188503. View

2.
Yengo L, Sidorenko J, Kemper K, Zheng Z, Wood A, Weedon M . Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018; 27(20):3641-3649. PMC: 6488973. DOI: 10.1093/hmg/ddy271. View

3.
McLaren W, Gil L, Hunt S, Riat H, Ritchie G, Thormann A . The Ensembl Variant Effect Predictor. Genome Biol. 2016; 17(1):122. PMC: 4893825. DOI: 10.1186/s13059-016-0974-4. View

4.
Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D . Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498-504. PMC: 403769. DOI: 10.1101/gr.1239303. View

5.
Robins C, Liu Y, Fan W, Duong D, Meigs J, Harerimana N . Genetic control of the human brain proteome. Am J Hum Genet. 2021; 108(3):400-410. PMC: 8008492. DOI: 10.1016/j.ajhg.2021.01.012. View