» Articles » PMID: 15132542

Silvestrol and Episilvestrol, Potential Anticancer Rocaglate Derivatives from Aglaia Silvestris

Abstract

Two cytotoxic rocaglate derivatives possessing an unusual dioxanyloxy unit, silvestrol (1) and episilvestrol (2), were isolated from the fruits and twigs of Aglaia silvestris by bioassay-guided fractionation monitored with a human oral epidermoid carcinoma (KB) cell line. Additionally, two new baccharane-type triterpenoids, 17,24-epoxy-25-hydroxybaccharan-3-one (3) and 17,24-epoxy-25-hydroxy-3-oxobaccharan-21-oic acid (4), as well as eleven known compounds, 1beta,6alpha-dihydroxy-4(15)-eudesmene (5), ferulic acid (6), grasshopper ketone (7), apigenin, cabraleone, chrysoeriol, 1beta,4beta-dihydroxy-6alpha,15alpha-epoxyeudesmane, 4-hydroxy-3-methoxyacetophenone, 4-hydroxyphenethyl alcohol, ocotillone, and beta-sitosterol 3-O-beta-D-glucopyranoside, were also isolated and characterized. The structures of compounds 1-4 were elucidated by spectroscopic studies and by chemical transformation. The absolute stereochemistry of silvestrol (1) was established by a X-ray diffraction study of its di-p-bromobenzoate derivative, and the structure of 3 was also confirmed by single-crystal X-ray diffraction. The isolates and chemical transformation products were evaluated for cytotoxicity against several human cancer cell lines, and silvestrol (1) and episilvestrol (2) exhibited potent in vitro cytotoxic activity. Silvestrol (1) was further evaluated in vivo in the hollow fiber test and in the murine P-388 leukemia model.

Citing Articles

Protein-RNA interactions mediated by silvestrol-insight into a unique molecular clamp.

Naineni S, Bhatt G, Jiramongkolsiri E, Robert F, Cencic R, Huang S Nucleic Acids Res. 2024; 52(20):12701-12711.

PMID: 39351865 PMC: 11551732. DOI: 10.1093/nar/gkae824.


Discovery of RNA-Protein Molecular Clamps Using Proteome-Wide Stability Assays.

Goldstein S, Fan A, Wang Z, Naineni S, Cencic R, Garcia-Gutierrez S bioRxiv. 2024; .

PMID: 38659867 PMC: 11042367. DOI: 10.1101/2024.04.19.590252.


Broad anti-pathogen potential of DEAD box RNA helicase eIF4A-targeting rocaglates.

Obermann W, Azri M, Konopka L, Schmidt N, Magari F, Sherman J Sci Rep. 2023; 13(1):9297.

PMID: 37291191 PMC: 10250355. DOI: 10.1038/s41598-023-35765-6.


Strategies for the discovery of potential anticancer agents from plants collected from Southeast Asian tropical rainforests as a case study.

de Blanco E, Addo E, Rakotondraibe H, Soejarto D, Kinghorn A Nat Prod Rep. 2023; 40(7):1181-1197.

PMID: 37194649 PMC: 10524867. DOI: 10.1039/d2np00080f.


Antiplasmodial Properties of Aqueous and Ethanolic Extracts of Ten Herbal Traditional Recipes Used in Thailand against .

Phuwajaroanpong A, Chaniad P, Plirat W, Phoopha S, Septama A, Chukaew A Trop Med Infect Dis. 2022; 7(12).

PMID: 36548672 PMC: 9786625. DOI: 10.3390/tropicalmed7120417.