Javed A, Christodoulou J, Cabrita L, Orlova E
Acta Crystallogr D Struct Biol. 2017; 73(Pt 6):509-521.
PMID: 28580913
PMC: 5458493.
DOI: 10.1107/S2059798317007446.
Hori H, Sawada M, Osawa S, Murao K, Ishikura H
Nucleic Acids Res. 1981; 9(20):5407-10.
PMID: 7301591
PMC: 327528.
DOI: 10.1093/nar/9.20.5407.
Mashkova T, Serenkova T, Mazo A, Avdonina T, Timofeyeva MYa , Kisselev L
Nucleic Acids Res. 1981; 9(9):2141-51.
PMID: 7197777
PMC: 326831.
DOI: 10.1093/nar/9.9.2141.
Hinnebusch A, Klotz L, Blanken R, Loeblich 3rd A
J Mol Evol. 1981; 17(6):334-7.
PMID: 7197304
DOI: 10.1007/BF01734355.
Noller H, Kop J, Wheaton V, Brosius J, Gutell R, Kopylov A
Nucleic Acids Res. 1981; 9(22):6167-89.
PMID: 7031608
PMC: 327592.
DOI: 10.1093/nar/9.22.6167.
Sequence homologies between eukaryotic 5.8S rRNA and the 5' end of prokaryotic 23S rRNa: evidences for a common evolutionary origin.
Jacq B
Nucleic Acids Res. 1981; 9(12):2913-32.
PMID: 7024907
PMC: 326902.
DOI: 10.1093/nar/9.12.2913.
Chemical reactivity of E. coli 5S RNA in situ in the 50S ribosomal subunit.
Silberklang M, RajBhandary U, Luck A, Erdmann V
Nucleic Acids Res. 1983; 11(3):605-17.
PMID: 6340064
PMC: 325740.
DOI: 10.1093/nar/11.3.605.
tRNA genes are found between 16S and 23S rRNA genes in Bacillus subtilis.
Loughney K, Lund E, Dahlberg J
Nucleic Acids Res. 1982; 10(5):1607-24.
PMID: 6280153
PMC: 320553.
DOI: 10.1093/nar/10.5.1607.
Three-dimensional structural model of eubacterial 5S RNA that has functional implications.
Pieler T, Erdmann V
Proc Natl Acad Sci U S A. 1982; 79(15):4599-603.
PMID: 6181508
PMC: 346722.
DOI: 10.1073/pnas.79.15.4599.
The role of the basic N-terminal region of protein L18 in 5S RNA-23S RNA complex formation.
Newberry V, Garrett R
Nucleic Acids Res. 1980; 8(18):4131-42.
PMID: 6159586
PMC: 324224.
DOI: 10.1093/nar/8.18.4131.
Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli.
Brosius J, Dull T, Noller H
Proc Natl Acad Sci U S A. 1980; 77(1):201-4.
PMID: 6153795
PMC: 348236.
DOI: 10.1073/pnas.77.1.201.
A comparison of the solution structures and conformational properties of the somatic and oocyte 5S rRNAs of Xenopus laevis.
Romaniuk P, de Stevenson I, Ehresmann C, Romby P, Ehresmann B
Nucleic Acids Res. 1988; 16(5):2295-312.
PMID: 3357778
PMC: 338217.
DOI: 10.1093/nar/16.5.2295.
In vitro incorporation of eubacterial, archaebacterial and eukaryotic 5S rRNAs into large ribosomal subunits of Bacillus stearothermophilus.
Hartmann R, Vogel D, Walker R, Erdmann V
Nucleic Acids Res. 1988; 16(8):3511-24.
PMID: 2453840
PMC: 336509.
DOI: 10.1093/nar/16.8.3511.
Molecular evolution of 5S RNA.
Hori H
Mol Gen Genet. 1976; 145(2):119-23.
PMID: 934049
DOI: 10.1007/BF00269583.
Sequence characterization of 5S ribosomal RNA from eight gram positive procaryotes.
Woese C, Luehrsen K, Pribula C, Fox G
J Mol Evol. 1976; 8(2):143-53.
PMID: 823342
DOI: 10.1007/BF01739100.
Transcriptional organization of the 5.8S ribosomal RNA cistron in Xenopus laevis ribosomal DNA.
Walker T, Pace N
Nucleic Acids Res. 1977; 4(3):595-601.
PMID: 559301
PMC: 342465.
DOI: 10.1093/nar/4.3.595.
Partial enzyme digestion studies on Escherichia coli, Pseudomonas, Chlorella, Drosophila, HeLa and yeast 5S RNAs support a general class of 5S RNA models.
Vigne R, Jordan B
J Mol Evol. 1977; 10(1):77-86.
PMID: 409850
DOI: 10.1007/BF01796136.
Fragment of protein L18 from the Escherichia coli ribosome that contains the 5S RNA binding site.
Newberry V, Brosius J, Garrett R
Nucleic Acids Res. 1978; 5(6):1753-66.
PMID: 353728
PMC: 342123.
DOI: 10.1093/nar/5.6.1753.
Specific binding of tRNAMet to 23S rRNA of Escherichia coli.
Dahlberg J, Kintner C, Lund E
Proc Natl Acad Sci U S A. 1978; 75(3):1071-5.
PMID: 349554
PMC: 411410.
DOI: 10.1073/pnas.75.3.1071.
Pathway-dependent refolding of E. coli 5S RNA.
Weidner H, Crothers D
Nucleic Acids Res. 1977; 4(10):3401-14.
PMID: 337236
PMC: 342661.
DOI: 10.1093/nar/4.10.3401.