» Articles » PMID: 6181508

Three-dimensional Structural Model of Eubacterial 5S RNA That Has Functional Implications

Overview
Specialty Science
Date 1982 Aug 1
PMID 6181508
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Escherichia coli 5S RNA and its specific protein complexes were hydrolyzed with the single-strand-specific nuclease S1. Based on the results, a tertiary structural model for E. coli 5S RNA is proposed in which ribosomal proteins E-L5, E-L18, and E-L25 influence the conformation of the RNA. This may be of significance for ribosomal function. Comparison of the proposed E. coli 5S RNA structure with those of 18 other prokaryotic 5S RNAs led to a generalized eubacterial 5S RNA tertiary structure in which the majority of the conserved nucleotides are in non-base-paired regions and several conserved "looped-out" adenines (in E. coli, adenines -52, -53, -57, -58, and -66) are implied to be important for protein recognition or interaction or both.

Citing Articles

Direct 5S rRNA Assay for Monitoring Mixed-Culture Bioprocesses.

Stoner D, Browning C, Bulmer D, Ward T, Macdonell M Appl Environ Microbiol. 1996; 62(6):1969-76.

PMID: 16535333 PMC: 1388871. DOI: 10.1128/aem.62.6.1969-1976.1996.


Detection of multiple conformations of the E-domain of 5S rRNA from Escherichia coli in solution and in crystals by NMR spectroscopy.

Grune M, Furste J, Klussmann S, Erdmann V, Brown L Nucleic Acids Res. 1996; 24(13):2592-6.

PMID: 8692701 PMC: 145962. DOI: 10.1093/nar/24.13.2592.


Consensus structure and evolution of 5S rRNA.

Kuntzel H, Piechulla B, Hahn U Nucleic Acids Res. 1983; 11(3):893-900.

PMID: 6835839 PMC: 325760. DOI: 10.1093/nar/11.3.893.


Precise localisation of three intra-RNA cross-links in 23S RNA and one in 5S RNA, induced by treatment of Escherichia coli 50S ribosomal subunits with bis-(2-chloroethyl)-methylamine.

Stiege W, Zwieb C, Brimacombe R Nucleic Acids Res. 1982; 10(22):7211-29.

PMID: 6818528 PMC: 326999. DOI: 10.1093/nar/10.22.7211.


An energy model that predicts the correct folding of both the tRNA and the 5S RNA molecules.

PAPANICOLAOU C, Gouy M, Ninio J Nucleic Acids Res. 1984; 12(1 Pt 1):31-44.

PMID: 6694903 PMC: 320981. DOI: 10.1093/nar/12.1part1.31.


References
1.
Nishikawa K, Takemura S . Structure and function of 5S ribosomal ribonucleic acid from Torulopsis utilis. III. Detection of single-stranded regions by digestion with nuclease S1. J Biochem. 1977; 81(4):995-1003. DOI: 10.1093/oxfordjournals.jbchem.a131566. View

2.
Lewis J, Doty P . Identification of the single-strand regions in Escherichia coli 5S RNA, native and A forms, by the binding of oligonucleotides. Biochemistry. 1977; 16(23):5016-25. DOI: 10.1021/bi00642a012. View

3.
Volckaert G, Fiers W . Micro thin-layer techniques for rapid sequence analysis of 32P-labeled RNA: double digestion and pancreatic ribonuclease analyses. Anal Biochem. 1977; 83(1):228-39. DOI: 10.1016/0003-2697(77)90531-0. View

4.
Wrede P, Pongs O, Erdmann V . Binding oligonucleotides to Escherichia coli and Bacillus stearothermophilus 5 S RNA. J Mol Biol. 1978; 120(1):83-96. DOI: 10.1016/0022-2836(78)90296-6. View

5.
Zimmermann J, Erdmann V . Identification of Escherichia coli and Bacillus stearothermophilus ribosomal protein binding sites on Escherichia coli 5S RNA. Mol Gen Genet. 1978; 160(3):247-57. DOI: 10.1007/BF00332968. View