» Articles » PMID: 9675170

Model for the Light-harvesting Complex I (B875) of Rhodobacter Sphaeroides

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1998 Jul 24
PMID 9675170
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

The light-harvesting complex I (LH-I) of Rhodobacter sphaeroides has been modeled computationally as a hexadecamer of alphabeta-heterodimers, based on a close homology of the heterodimer to that of light-harvesting complex II (LH-II) of Rhodospirillum molischianum. The resulting LH-I structure yields an electron density projection map that is in agreement with an 8.5-A resolution electron microscopic projection map for the highly homologous LH-I of Rs. rubrum. A complex of the modeled LH-I with the photosynthetic reaction center of the same species has been obtained by a constrained conformational search. This complex and the available structures of LH-II from Rs. molischianum and Rhodopseudomonas acidophila furnish a complete model of the pigment organization in the photosynthetic membrane of purple bacteria.

Citing Articles

Engineering excitonically coupled dimers in an artificial protein for light harvesting via computational modeling.

Curti M, Maffeis V, Duarte L, Shareef S, Hallado L, Curutchet C Protein Sci. 2023; 32(3):e4579.

PMID: 36715022 PMC: 9951196. DOI: 10.1002/pro.4579.


The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides.

Strakhovskaya M, Lukashev E, Korvatovskiy B, Kholina E, Seifullina N, Knox P Photosynth Res. 2021; 147(2):197-209.

PMID: 33389445 PMC: 7778420. DOI: 10.1007/s11120-020-00807-x.


Contribution of low-temperature single-molecule techniques to structural issues of pigment-protein complexes from photosynthetic purple bacteria.

Lohner A, Cogdell R, Kohler J J R Soc Interface. 2018; 15(138).

PMID: 29321265 PMC: 5805968. DOI: 10.1098/rsif.2017.0680.


Versatile design of biohybrid light-harvesting architectures to tune location, density, and spectral coverage of attached synthetic chromophores for enhanced energy capture.

Harris M, Jiang J, Niedzwiedzki D, Jiao J, Taniguchi M, Kirmaier C Photosynth Res. 2014; 121(1):35-48.

PMID: 24604033 DOI: 10.1007/s11120-014-9993-8.


Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers.

Strumpfer J, Schulten K J Chem Theory Comput. 2012; 8(8):2808-2816.

PMID: 23105920 PMC: 3480185. DOI: 10.1021/ct3003833.


References
1.
Kuhlbrandt W, Wang D, Fujiyoshi Y . Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994; 367(6464):614-21. DOI: 10.1038/367614a0. View

2.
Stark W, Kuhlbrandt W, Wildhaber I, WEHRLI E, Muhlethaler K . The structure of the photoreceptor unit of Rhodopseudomonas viridis. EMBO J. 1984; 3(4):777-83. PMC: 557426. DOI: 10.1002/j.1460-2075.1984.tb01884.x. View

3.
Olsen J, Hunter C . Protein structure modelling of the bacterial light-harvesting complex. Photochem Photobiol. 1994; 60(6):521-35. DOI: 10.1111/j.1751-1097.1994.tb05144.x. View

4.
Theiler R, Suter F, Wiemken V, Zuber H . The light-harvesting polypeptides of Rhodopseudomonas sphaeroides R-26.1. I. Isolation, purification and sequence analyses. Hoppe Seylers Z Physiol Chem. 1984; 365(7):703-19. DOI: 10.1515/bchm2.1984.365.2.703. View

5.
Schuler G, Altschul S, Lipman D . A workbench for multiple alignment construction and analysis. Proteins. 1991; 9(3):180-90. DOI: 10.1002/prot.340090304. View