» Articles » PMID: 22844553

How Quantum Coherence Assists Photosynthetic Light Harvesting

Overview
Specialty Chemistry
Date 2012 Jul 31
PMID 22844553
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

This perspective examines how hundreds of pigment molecules in purple bacteria cooperate through quantum coherence to achieve remarkable light harvesting efficiency. Quantum coherent sharing of excitation, which modifies excited state energy levels and combines transition dipole moments, enables rapid transfer of excitation over large distances. Purple bacteria exploit the resulting excitation transfer to engage many antenna proteins in light harvesting, thereby increasing the rate of photon absorption and energy conversion. We highlight here how quantum coherence comes about and plays a key role in the photosynthetic apparatus of purple bacteria.

Citing Articles

Bioinspired polymeric supramolecular columns as efficient yet controllable artificial light-harvesting platform.

Mu B, Hao X, Luo X, Yang Z, Lu H, Tian W Nat Commun. 2024; 15(1):903.

PMID: 38291054 PMC: 10827788. DOI: 10.1038/s41467-024-45252-9.


Pursuing excitonic energy transfer with programmable DNA-based optical breadboards.

Mathur D, Diaz S, Hildebrandt N, Pensack R, Yurke B, Biaggne A Chem Soc Rev. 2023; 52(22):7848-7948.

PMID: 37872857 PMC: 10642627. DOI: 10.1039/d0cs00936a.


Directed Gradients in the Excited-State Energy Landscape of Poly(3-hexylthiophene) Nanofibers.

Stater S, Wenzel F, Welz H, Kreger K, Kohler J, Schmidt H J Am Chem Soc. 2023; 145(25):13780-13787.

PMID: 37315116 PMC: 10311527. DOI: 10.1021/jacs.3c02117.


Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray.

Varvelo L, Lynd J, Citty B, Kuhn O, Raccah D J Phys Chem Lett. 2023; 14(12):3077-3083.

PMID: 36947483 PMC: 10069740. DOI: 10.1021/acs.jpclett.3c00086.


Semiclassical Theory of Multistage Nonequilibrium Electron Transfer in Macromolecular Compounds in Polar Media with Several Relaxation Timescales.

Feskov S Int J Mol Sci. 2022; 23(24).

PMID: 36555434 PMC: 9779366. DOI: 10.3390/ijms232415793.


References
1.
Cogdell R, Gall A, Kohler J . The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys. 2006; 39(3):227-324. DOI: 10.1017/S0033583506004434. View

2.
Deisenhofer J, Michel H . The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis. Science. 1989; 245(4925):1463-73. DOI: 10.1126/science.245.4925.1463. View

3.
Ishizaki A, Fleming G . Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J Chem Phys. 2009; 130(23):234111. DOI: 10.1063/1.3155372. View

4.
Panitchayangkoon G, Hayes D, Fransted K, Caram J, Harel E, Wen J . Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc Natl Acad Sci U S A. 2010; 107(29):12766-70. PMC: 2919932. DOI: 10.1073/pnas.1005484107. View

5.
Emerson R, Arnold W . THE PHOTOCHEMICAL REACTION IN PHOTOSYNTHESIS. J Gen Physiol. 2009; 16(2):191-205. PMC: 2141200. DOI: 10.1085/jgp.16.2.191. View