» Articles » PMID: 9475760

Mapping Quantitative Trait Loci Using Multiple Families of Line Crosses

Overview
Journal Genetics
Specialty Genetics
Date 1998 Feb 25
PMID 9475760
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

To avoid a loss in statistical power as a result of homozygous individuals being selected as parents of a mapping population, one can use multiple families of line crosses for quantitative trait genetic linkage analysis. Two strategies of combining data are investigated: the fixed-model and the random-model strategies. The fixed-model approach estimates and tests the average effect of gene substitution for each parent, while the random-model approach treats each effect of gene substitution as a random variable and directly estimates and tests the variance of gene substitution. Extensive Monte Carlo simulations verify that the two strategies perform equally well, although the random model is preferable in combining data from a large number of families. Simulations also show that there may be an optimal sampling strategy (number of families vs. number of individuals per family) in which QTL mapping reaches its maximum power and minimum estimation error. Deviation from the optimal strategy reduces the efficiency of the method.

Citing Articles

Characterization of adaptation mechanisms in sorghum using a multireference back-cross nested association mapping design and envirotyping.

Garin V, Diallo C, Tekete M, Thera K, Guitton B, Dagno K Genetics. 2024; 226(4).

PMID: 38381593 PMC: 10990433. DOI: 10.1093/genetics/iyae003.


The influence of QTL allelic diversity on QTL detection in multi-parent populations: a simulation study in sugar beet.

Garin V, Wimmer V, Borchardt D, Malosetti M, van Eeuwijk F BMC Genom Data. 2021; 22(1):4.

PMID: 33568071 PMC: 7860181. DOI: 10.1186/s12863-021-00960-9.


Lessons from a GWAS study of a wheat pre-breeding program: pyramiding resistance alleles to Fusarium crown rot.

Malosetti M, Zwep L, Forrest K, van Eeuwijk F, Dieters M Theor Appl Genet. 2020; 134(3):897-908.

PMID: 33367942 PMC: 7925461. DOI: 10.1007/s00122-020-03740-8.


Intercontinental trials reveal stable QTL for Northern corn leaf blight resistance in Europe and in Brazil.

Galiano-Carneiro A, Kessel B, Presterl T, Miedaner T Theor Appl Genet. 2020; 134(1):63-79.

PMID: 32995900 PMC: 7813747. DOI: 10.1007/s00122-020-03682-1.


Multi-parent multi-environment QTL analysis: an illustration with the EU-NAM Flint population.

Garin V, Malosetti M, van Eeuwijk F Theor Appl Genet. 2020; 133(9):2627-2638.

PMID: 32518992 PMC: 7419492. DOI: 10.1007/s00122-020-03621-0.


References
1.
Haley C, Knott S . A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb). 1992; 69(4):315-24. DOI: 10.1038/hdy.1992.131. View

2.
Xu S . Computation of the full likelihood function for estimating variance at a quantitative trait locus. Genetics. 1996; 144(4):1951-60. PMC: 1207742. DOI: 10.1093/genetics/144.4.1951. View

3.
Lander E, Botstein D . Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989; 121(1):185-99. PMC: 1203601. DOI: 10.1093/genetics/121.1.185. View

4.
Goldgar D . Multipoint analysis of human quantitative genetic variation. Am J Hum Genet. 1990; 47(6):957-67. PMC: 1683895. View

5.
Weller J, Kashi Y, Soller M . Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci. 1990; 73(9):2525-37. DOI: 10.3168/jds.S0022-0302(90)78938-2. View