» Articles » PMID: 9172733

Structural Fluctuations of Myoglobin from Normal-modes, Mössbauer, Raman, and Absorption Spectroscopy

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1996 May 1
PMID 9172733
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

A normal-mode analysis of carbon monoxymyoglobin (MbCO) and deoxymyoglobin (Mb) with 170 water molecules is performed for (54)Fe and (57)Fe. A projection is defined that extracts iron out-of-plane vibrational modes and is used to calculate spectra that can be compared with those from resonance Raman scattering. The calculated spectra and the isotopic shift (57)Fe versus (54)Fe agree with the experimental data. At low temperatures the average mean square fluctuations (MSFs) of the protein backbone atoms agree with molecular dynamics simulation. Below 180 K the MSFs of the heme iron agree with the data from Mossbauer spectroscopy. The MSFs of the iron atom relative to the heme are an order of magnitude smaller than the total MSFs of the iron atom. They agree with the data from optical absorption spectroscopy. Thus the MSFs of the iron atom as measured by Mossbauer spectroscopy can be used to probe the overall motion of the heme within the protein matrix, whereas the Gaussian thermal line broadening of the Soret band and the resonance Raman bands can be used to detect local intramolecular iron-porphyrin motions.

Citing Articles

Data Collection for Dilute Protein Solutions via a Neutron Backscattering Spectrometer.

Tominaga T, Nakagawa H, Sahara M, Oda T, Inoue R, Sugiyama M Life (Basel). 2022; 12(5).

PMID: 35629343 PMC: 9145923. DOI: 10.3390/life12050675.


Water-Polymer Coupling Induces a Dynamical Transition in Microgels.

Tavagnacco L, Chiessi E, Zanatta M, Orecchini A, Zaccarelli E J Phys Chem Lett. 2019; 10(4):870-876.

PMID: 30735054 PMC: 6416711. DOI: 10.1021/acs.jpclett.9b00190.


Enzyme transient state kinetics in crystal and solution from the perspective of a time-resolved crystallographer.

Schmidt M, Saldin D Struct Dyn. 2016; 1(2):024701.

PMID: 26798774 PMC: 4711602. DOI: 10.1063/1.4869472.


A physical picture of protein dynamics and conformational changes.

Parak F, Achterhold K, Croci S, Schmidt M J Biol Phys. 2009; 33(5-6):371-87.

PMID: 19669525 PMC: 2565763. DOI: 10.1007/s10867-008-9102-3.


Resilience of the iron environment in heme proteins.

Leu B, Zhang Y, Bu L, Straub J, Zhao J, Sturhahn W Biophys J. 2008; 95(12):5874-89.

PMID: 18835904 PMC: 2599821. DOI: 10.1529/biophysj.108.138198.


References
1.
Frauenfelder H, Sligar S, Wolynes P . The energy landscapes and motions of proteins. Science. 1991; 254(5038):1598-603. DOI: 10.1126/science.1749933. View

2.
Srajer V , Schomacker , Champion . Spectral broadening in biomolecules. Phys Rev Lett. 1986; 57(10):1267-1270. DOI: 10.1103/PhysRevLett.57.1267. View

3.
Parak F, Knapp E, Kucheida D . Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J Mol Biol. 1982; 161(1):177-94. DOI: 10.1016/0022-2836(82)90285-6. View

4.
Kuczera K, Kuriyan J, Karplus M . Temperature dependence of the structure and dynamics of myoglobin. A simulation approach. J Mol Biol. 1990; 213(2):351-73. DOI: 10.1016/S0022-2836(05)80196-2. View

5.
Di Pace A, Cupane A, Leone M, Vitrano E, Cordone L . Protein dynamics. Vibrational coupling, spectral broadening mechanisms, and anharmonicity effects in carbonmonoxy heme proteins studied by the temperature dependence of the Soret band lineshape. Biophys J. 1992; 63(2):475-84. PMC: 1262171. DOI: 10.1016/S0006-3495(92)81606-5. View