» Articles » PMID: 9916036

Harmonic Behavior of Trehalose-coated Carbon-monoxy-myoglobin at High Temperature

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1999 Jan 23
PMID 9916036
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Embedding biostructures in saccharide glasses protects them against extreme dehydration and/or exposure to very high temperature. Among the saccharides, trehalose appears to be the most effective bioprotectant. In this paper we report on the low-frequency dynamics of carbon monoxy myoglobin in an extremely dry trehalose glass measured by neutron spectroscopy. Under these conditions, the mean square displacements and the density of state function are those of a harmonic solid, up to room temperature, in contrast to D2O-hydrated myoglobin, in which a dynamical transition to a nonharmonic regime has been observed at approximately 180 K (Doster et al., 1989. Nature. 337:754-756). The protective effect of trehalose is correlated, therefore, with a trapping of the protein in a harmonic potential, even at relatively high temperature.

Citing Articles

Trehalose Interferes with the Photosynthetic Electron Transfer Chain of Permeating the Bacterial Chromatophore Membrane.

Venturoli G, Mamedov M, Vitukhnovskaya L, Semenov A, Francia F Int J Mol Sci. 2025; 25(24.

PMID: 39769184 PMC: 11678701. DOI: 10.3390/ijms252413420.


Nanocrystallites Modulate Intermolecular Interactions in Cryoprotected Protein Solutions.

Filianina M, Bin M, Berkowicz S, Reiser M, Li H, Timmermann S J Phys Chem B. 2023; 127(27):6197-6204.

PMID: 37399586 PMC: 10350957. DOI: 10.1021/acs.jpcb.3c02413.


Joint neutron/molecular dynamics vibrational spectroscopy reveals softening of HIV-1 protease upon binding of a tight inhibitor.

Kneller D, Gerlits O, Daemen L, Pavlova A, Gumbart J, Cheng Y Phys Chem Chem Phys. 2022; 24(6):3586-3597.

PMID: 35089990 PMC: 8940534. DOI: 10.1039/d1cp05487b.


Substrate Binding Stiffens Aspartate Aminotransferase by Altering the Enzyme Picosecond Vibrational Dynamics.

Dajnowicz S, Cheng Y, Daemen L, Weiss K, Gerlits O, Mueser T ACS Omega. 2020; 5(30):18787-18797.

PMID: 32775880 PMC: 7408236. DOI: 10.1021/acsomega.0c01900.


The molecular dynamics of bacterial spore and the role of calcium dipicolinate in core properties at the sub-nanosecond time-scale.

Colas de la Noue A, Natali F, Fekraoui F, Gervais P, Martinez N, Perrier-Cornet J Sci Rep. 2020; 10(1):8265.

PMID: 32427943 PMC: 7237433. DOI: 10.1038/s41598-020-65093-y.


References
1.
Cordone L, Galajda P, Vitrano E, Gassmann A, Ostermann A, Parak F . A reduction of protein specific motions in co-ligated myoglobin embedded in a trehalose glass. Eur Biophys J. 2000; 27(2):173-6. DOI: 10.1007/s002490050123. View

2.
Di Pace A, Cupane A, Leone M, Vitrano E, Cordone L . Protein dynamics. Vibrational coupling, spectral broadening mechanisms, and anharmonicity effects in carbonmonoxy heme proteins studied by the temperature dependence of the Soret band lineshape. Biophys J. 1992; 63(2):475-84. PMC: 1262171. DOI: 10.1016/S0006-3495(92)81606-5. View

3.
Crowe J, Crowe L, Chapman D . Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984; 223(4637):701-3. DOI: 10.1126/science.223.4637.701. View

4.
Cusack S, Doster W . Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. Biophys J. 1990; 58(1):243-51. PMC: 1280956. DOI: 10.1016/S0006-3495(90)82369-9. View

5.
Doster W, Cusack S, Petry W . Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989; 337(6209):754-6. DOI: 10.1038/337754a0. View