» Articles » PMID: 4092066

Do Vibrational Spectroscopies Uniquely Describe Protein Dynamics? The Case for Myoglobin

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1985 Dec 1
PMID 4092066
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

We develop a quasi-harmonic description of protein dynamics and apply this description to the anomalous Mössbauer, infrared, x-ray diffraction, and EXAFS (extended x-ray absorption fine structure spectroscopy) data that are available for myoglobin (Mb) and its interactions with carbon monoxide (CO). In the quasi-harmonic approximation the dynamical parameters derived from these spectroscopic data are relevant in the calculation of reaction rates, and we give a quantitative description of the nonexponential kinetics of Mb-CO binding observed at low temperatures. All these data have previously been interpreted in terms of the more complex conformational substates model for protein dynamics. We point out several problems with this model and propose experiments that can provide detailed tests of the quasi-harmonic theory proposed here.

Citing Articles

Quantum and classical dynamics in biochemical reactions.

Bialek W, Bruno W, Joseph J, Onuchic J Photosynth Res. 2014; 22(1):15-27.

PMID: 24424675 DOI: 10.1007/BF00114763.


Structural fluctuations of myoglobin from normal-modes, Mössbauer, Raman, and absorption spectroscopy.

Melchers B, Knapp E, Parak F, Cordone L, Cupane A, Leone M Biophys J. 1996; 70(5):2092-9.

PMID: 9172733 PMC: 1225184. DOI: 10.1016/S0006-3495(96)79775-8.


Influence of specific contacts on the stability and structure of proteins. Theory for the perturbation of a harmonic system.

Jackson M Biophys J. 1987; 51(2):313-21.

PMID: 3828463 PMC: 1329892. DOI: 10.1016/S0006-3495(87)83337-4.


On the mechanism of ligand binding to myoglobin. The role of structural fluctuations.

Doster W Eur Biophys J. 1989; 17(4):217-20.

PMID: 2612440 DOI: 10.1007/BF00284728.


Energy distributions at the high-spin ferric sites in myoglobin crystals.

Fiamingo F, Brill A, Hampton D, Thorkildsen R Biophys J. 1989; 55(1):67-77.

PMID: 2539208 PMC: 1330444. DOI: 10.1016/S0006-3495(89)82781-X.

References
1.
Gavish B . Modelling the unusual temperature dependence of atomic displacements in proteins by local nonharmonic potentials. Proc Natl Acad Sci U S A. 1981; 78(11):6868-72. PMC: 349153. DOI: 10.1073/pnas.78.11.6868. View

2.
Parak F, Frolov E, Mossbauer R, Goldanskii V . Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J Mol Biol. 1981; 145(4):825-33. DOI: 10.1016/0022-2836(81)90317-x. View

3.
NOGUTI T, Go N . Collective variable description of small-amplitude conformational fluctuations in a globular protein. Nature. 1982; 296(5859):776-8. DOI: 10.1038/296776a0. View

4.
Tsubaki M, Srivastava R, Yu N . Resonance Raman investigation of carbon monoxide bonding in (carbon monoxy)hemoglobin and -myoglobin: detection of Fe-CO stretching and Fe-C-O bending vibrations and influence of the quaternary structure change. Biochemistry. 1982; 21(6):1132-40. DOI: 10.1021/bi00535a004. View

5.
Alben J, Beece D, Bowne S, Doster W, Eisenstein L, Frauenfelder H . Infrared spectroscopy of photodissociated carboxymyoglobin at low temperatures. Proc Natl Acad Sci U S A. 1982; 79(12):3744-8. PMC: 346503. DOI: 10.1073/pnas.79.12.3744. View