» Articles » PMID: 8150966

Suppression of Fungal Growth Exhibited by Pseudomonas Aeruginosa

Overview
Specialty Microbiology
Date 1994 Feb 1
PMID 8150966
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Three surgery patients were monitored postoperatively, with particular reference to lung infection. In each case there was a clinical impression that Pseudomonas aeruginosa suppressed the growth of Candida albicans in patients with clinically significant lung infections from whom both of these organisms were isolated from serial sputum samples. Regrowth of C. albicans after P. aeruginosa eradication occurred in two patients, despite fluconazole therapy, to which both C. albicans isolates were susceptible. In all three patients, the strain of P. aeruginosa was found to inhibit the growth of the corresponding C. albicans strain in vitro. Further in vitro susceptibility studies revealed significant inhibition by 10 strains of P. aeruginosa of 11 strains of fungi known to infect humans; these were Candida krusei, Candida keyfr, Candida guillermondii, Candida tropicalis, Candida lusitaniae, Candida parapsilosis, Candida pseudotropicalis, Candida albicans, Torulopsis glabrata, Saccharomyces cerevisiae, and Aspergillus fumigatus.

Citing Articles

Uncharted territories in the discovery of antifungal and antivirulence natural products from bacteria.

Vij R, Hube B, Brunke S Comput Struct Biotechnol J. 2021; 19:1244-1252.

PMID: 33680363 PMC: 7905183. DOI: 10.1016/j.csbj.2021.02.003.


Virulence profiles of some Pseudomonas aeruginosa clinical isolates and their association with the suppression of Candida growth in polymicrobial infections.

Abd El-Baky R, Mandour S, Ahmed E, Hashem Z, Sandle T, Mohamed D PLoS One. 2020; 15(12):e0243418.

PMID: 33290412 PMC: 7723275. DOI: 10.1371/journal.pone.0243418.


Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics.

Doing G, Koeppen K, Occipinti P, Harty C, Hogan D PLoS Genet. 2020; 16(8):e1008783.

PMID: 32813693 PMC: 7480860. DOI: 10.1371/journal.pgen.1008783.


Bacteria Modify Hypha Formation, Microcolony Properties, and Survival within Macrophages.

Salvatori O, Kumar R, Metcalfe S, Vickerman M, Kay J, Edgerton M mSphere. 2020; 5(4).

PMID: 32759336 PMC: 7407070. DOI: 10.1128/mSphere.00689-20.


Pathogenetic Impact of Bacterial-Fungal Interactions.

Nogueira F, Sharghi S, Kuchler K, Lion T Microorganisms. 2019; 7(10).

PMID: 31623187 PMC: 6843596. DOI: 10.3390/microorganisms7100459.


References
1.
Elander R, Mabe J, Hamill R, Gorman M . Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas species. Appl Microbiol. 1968; 16(5):753-8. PMC: 547512. DOI: 10.1128/am.16.5.753-758.1968. View

2.
Upadhyay R, Visintin L, Jayaswal R . Environmental factors affecting the antagonism of Pseudomonas cepacia against Trichoderma viride. Can J Microbiol. 1991; 37(11):880-4. DOI: 10.1139/m91-152. View

3.
Jayaswal R, Fernandez M, Schroeder R . Isolation and characterization of a pseudomonas strain that restricts growth of various phytopathogenic fungi. Appl Environ Microbiol. 1990; 56(4):1053-8. PMC: 184342. DOI: 10.1128/aem.56.4.1053-1058.1990. View

4.
GORDEE R, Matthews T . Systemic antifungal activity of pyrrolnitrin. Appl Microbiol. 1969; 17(5):690-4. PMC: 377781. DOI: 10.1128/am.17.5.690-694.1969. View

5.
Evans L, Linker A . Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol. 1973; 116(2):915-24. PMC: 285463. DOI: 10.1128/jb.116.2.915-924.1973. View