» Articles » PMID: 24214679

Pyocyanin: Production, Applications, Challenges and New Insights

Overview
Publisher Springer
Date 2013 Nov 12
PMID 24214679
Citations 82
Authors
Affiliations
Soon will be listed here.
Abstract

Pseudomonas aeruginosa is an opportunistic, Gram-negative bacterium and is one of the most commercially and biotechnologically valuable microorganisms. Strains of P. aeruginosa secrete a variety of redox-active phenazine compounds, the most well studied being pyocyanin. Pyocyanin is responsible for the blue-green colour characteristic of Pseudomonas spp. It is considered both as a virulence factor and a quorum sensing signalling molecule for P. aeruginosa. Pyocyanin is an electrochemically active metabolite, involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognised as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. This review summarises recent advances of pyocyanin production from P. aeruginosa with special attention to antagonistic property and bio-control activity. The review also covers the challenges and new insights into pyocyanin from P. aeruginosa.

Citing Articles

sp. nov., a novel psychrotolerant species produces antimicrobial agents targeting resistant clinical isolates of .

Snopkova K, Sedlar K, Novakova D, Stankova E, Sedlacek I, Sedo O Curr Res Microb Sci. 2025; 8:100353.

PMID: 39968173 PMC: 11833414. DOI: 10.1016/j.crmicr.2025.100353.


Recent Advances in Phenazine Natural Products: Chemical Structures and Biological Activities.

Huang W, Wan Y, Zhang S, Wang C, Zhang Z, Su H Molecules. 2024; 29(19).

PMID: 39407699 PMC: 11477647. DOI: 10.3390/molecules29194771.


Cultivation in long-term simulated microgravity is detrimental to pyocyanin production and subsequent biofilm formation ability of .

Chen K, Vu L, Vollmer A Microbiol Spectr. 2024; 12(10):e0021124.

PMID: 39162544 PMC: 11448113. DOI: 10.1128/spectrum.00211-24.


1-1,2,3-triazol-1,4-naphthoquinone Derivatives: Novel Inhibitors Targeting Pyocyanin Biosynthesis for Infection Treatment Advances.

Costa D, Froes T, Mendes M, Forezi L, Ferreira V, Castilho M Curr Top Med Chem. 2024; 24(24):2161-2171.

PMID: 39136508 DOI: 10.2174/0115680266327024240726111230.


Pigments from pathogenic bacteria: a comprehensive update on recent advances.

Acharya K, Shaw S, Bhattacharya S, Biswas S, Bhandary S, Bhattacharya A World J Microbiol Biotechnol. 2024; 40(9):270.

PMID: 39030429 DOI: 10.1007/s11274-024-04076-x.


References
1.
Cox C . Role of pyocyanin in the acquisition of iron from transferrin. Infect Immun. 1986; 52(1):263-70. PMC: 262229. DOI: 10.1128/iai.52.1.263-270.1986. View

2.
Kaleli I, Cevahir N, Demir M, Yildirim U, Sahin R . Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens. Mycoses. 2007; 50(1):74-8. DOI: 10.1111/j.1439-0507.2006.01322.x. View

3.
Winstanley C, Fothergill J . The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett. 2008; 290(1):1-9. DOI: 10.1111/j.1574-6968.2008.01394.x. View

4.
Rada B, Leto T . Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol. 2012; 21(2):73-81. PMC: 3565070. DOI: 10.1016/j.tim.2012.10.004. View

5.
Young G . Pigment Production and Antibiotic Activity in Cultures of Pseudomonas aeruginosa. J Bacteriol. 1947; 54(2):109-17. PMC: 526526. DOI: 10.1128/jb.54.2.109-117.1947. View