» Articles » PMID: 8028028

The Evolution of the Histidine Biosynthetic Genes in Prokaryotes: a Common Ancestor for the HisA and HisF Genes

Overview
Journal J Mol Evol
Specialty Biochemistry
Date 1994 May 1
PMID 8028028
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The hisA and hisF genes belong to the histidine operon that has been extensively studied in the enterobacteria Escherichia coli and Salmonella typhimurium where the hisA gene codes for the phosphoribosyl-5-amino-1-phosphoribosyl-4-imidazolecarboxamide isomerase (EC 5.3.1.16) catalyzing the fourth step of the histidine biosynthetic pathway, and the hisF gene codes for a cyclase catalyzing the sixth reaction. Comparative analysis of nucleotide and predicted amino acid sequence of hisA and hisF genes in different microorganisms showed extensive sequence homology (43% considering similar amino acids), suggesting that the two genes arose from an ancestral gene by duplication and subsequent evolutionary divergence. A more detailed analysis, including mutual information, revealed an internal duplication both in hisA and hisF genes in each of the considered microorganisms. We propose that the hisA and hisF have originated from the duplication of a smaller ancestral gene corresponding to half the size of the actual genes followed by rapid evolutionary divergence. The involvement of gene elongation, gene duplication, and gene fusion in the evolution of the histidine biosynthetic genes is also discussed.

Citing Articles

The Operon as a Conundrum of Gene Dynamics and Biochemical Constraints: What We Have Learned from Histidine Biosynthesis.

Del Duca S, Semenzato G, Esposito A, Lio P, Fani R Genes (Basel). 2023; 14(4).

PMID: 37107707 PMC: 10138114. DOI: 10.3390/genes14040949.


The Histidine Biosynthetic Genes in the Superphylum Bacteroidota-Rhodothermota-Balneolota-Chlorobiota: Insights into the Evolution of Gene Structure and Organization.

Del Duca S, Riccardi C, Vassallo A, Fontana G, Castronovo L, Chioccioli S Microorganisms. 2021; 9(7).

PMID: 34361875 PMC: 8305728. DOI: 10.3390/microorganisms9071439.


The Role of Gene Elongation in the Evolution of Histidine Biosynthetic Genes.

Del Duca S, Chioccioli S, Vassallo A, Castronovo L, Fani R Microorganisms. 2020; 8(5).

PMID: 32414216 PMC: 7284861. DOI: 10.3390/microorganisms8050732.


Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines.

Vazquez-Salazar A, Becerra A, Lazcano A PLoS One. 2018; 13(4):e0196349.

PMID: 29698445 PMC: 5919458. DOI: 10.1371/journal.pone.0196349.


Can an Imidazole Be Formed from an Alanyl-Seryl-Glycine Tripeptide under Possible Prebiotic Conditions?.

Vazquez-Salazar A, Tan G, Stockton A, Fani R, Becerra A, Lazcano A Orig Life Evol Biosph. 2016; 47(3):345-354.

PMID: 27771860 DOI: 10.1007/s11084-016-9525-y.


References
1.
Crawford I . Evolution of a biosynthetic pathway: the tryptophan paradigm. Annu Rev Microbiol. 1989; 43:567-600. DOI: 10.1146/annurev.mi.43.100189.003031. View

2.
Gutell R, Power A, Hertz G, Putz E, Stormo G . Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res. 1992; 20(21):5785-95. PMC: 334417. DOI: 10.1093/nar/20.21.5785. View

3.
Parsot C . Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and D-serine dehydratase. EMBO J. 1986; 5(11):3013-9. PMC: 1167255. DOI: 10.1002/j.1460-2075.1986.tb04600.x. View

4.
Go M, Nosaka M . Protein architecture and the origin of introns. Cold Spring Harb Symp Quant Biol. 1987; 52:915-24. DOI: 10.1101/sqb.1987.052.01.100. View

5.
Nyunoya H, LUSTY C . The carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthetase. Proc Natl Acad Sci U S A. 1983; 80(15):4629-33. PMC: 384097. DOI: 10.1073/pnas.80.15.4629. View