Bahr G, Gonzalez L, Vila A
Chem Rev. 2021; 121(13):7957-8094.
PMID: 34129337
PMC: 9062786.
DOI: 10.1021/acs.chemrev.1c00138.
Liu Y, Chen C, Sun L, Gao H, Zhen J, Yang K
RSC Med Chem. 2021; 11(2):259-267.
PMID: 33479632
PMC: 7412727.
DOI: 10.1039/c9md00455f.
Papp-Wallace K, Mack A, Taracila M, Bonomo R
Infect Dis Clin North Am. 2020; 34(4):773-819.
PMID: 33011051
PMC: 7609624.
DOI: 10.1016/j.idc.2020.05.001.
Beleva Guthrie V, Masica D, Fraser A, Federico J, Fan Y, Camps M
Mol Biol Evol. 2018; 35(6):1507-1519.
PMID: 29522102
PMC: 5967520.
DOI: 10.1093/molbev/msy036.
Stojanoski V, Adamski C, Hu L, Mehta S, Sankaran B, Zwart P
Biochemistry. 2016; 55(17):2479-90.
PMID: 27073009
PMC: 5124363.
DOI: 10.1021/acs.biochem.6b00056.
Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance.
Jeon J, Lee J, Lee J, Park K, Karim A, Lee C
Int J Mol Sci. 2015; 16(5):9654-92.
PMID: 25938965
PMC: 4463611.
DOI: 10.3390/ijms16059654.
Enumerating pathways of proton abstraction based on a spatial and electrostatic analysis of residues in the catalytic site.
Chakraborty S
PLoS One. 2012; 7(6):e39577.
PMID: 22745790
PMC: 3379984.
DOI: 10.1371/journal.pone.0039577.
Novel metagenome-derived carboxylesterase that hydrolyzes β-lactam antibiotics.
Jeon J, Kim S, Lee H, Cha S, Lee J, Yoon S
Appl Environ Microbiol. 2011; 77(21):7830-6.
PMID: 21908637
PMC: 3209169.
DOI: 10.1128/AEM.05363-11.
ClbP is a prototype of a peptidase subgroup involved in biosynthesis of nonribosomal peptides.
Dubois D, Baron O, Cougnoux A, Delmas J, Pradel N, Boury M
J Biol Chem. 2011; 286(41):35562-35570.
PMID: 21795676
PMC: 3195562.
DOI: 10.1074/jbc.M111.221960.
Design, synthesis, crystal structures, and antimicrobial activity of sulfonamide boronic acids as β-lactamase inhibitors.
Eidam O, Romagnoli C, Caselli E, Babaoglu K, Teotico Pohlhaus D, Karpiak J
J Med Chem. 2010; 53(21):7852-63.
PMID: 20945905
PMC: 3166525.
DOI: 10.1021/jm101015z.
Structural bases for stability-function tradeoffs in antibiotic resistance.
Thomas V, McReynolds A, Shoichet B
J Mol Biol. 2009; 396(1):47-59.
PMID: 19913034
PMC: 2815101.
DOI: 10.1016/j.jmb.2009.11.005.
Re-examining the role of Lys67 in class C beta-lactamase catalysis.
Chen Y, McReynolds A, Shoichet B
Protein Sci. 2009; 18(3):662-9.
PMID: 19241376
PMC: 2760372.
DOI: 10.1002/pro.60.
Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes.
Tripathi L, Sowdhamini R
BMC Genomics. 2008; 9:549.
PMID: 19019219
PMC: 2605481.
DOI: 10.1186/1471-2164-9-549.
Saturation mutagenesis of Asn152 reveals a substrate selectivity switch in P99 cephalosporinase.
Lefurgy S, de Jong R, Cornish V
Protein Sci. 2007; 16(12):2636-46.
PMID: 18029418
PMC: 2222824.
DOI: 10.1110/ps.073092407.
Cross genome comparisons of serine proteases in Arabidopsis and rice.
Tripathi L, Sowdhamini R
BMC Genomics. 2006; 7:200.
PMID: 16895613
PMC: 1560137.
DOI: 10.1186/1471-2164-7-200.
The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution.
Chen Y, Minasov G, Roth T, Prati F, Shoichet B
J Am Chem Soc. 2006; 128(9):2970-6.
PMID: 16506777
PMC: 1544378.
DOI: 10.1021/ja056806m.
Dynamical aspects of TEM-1 beta-lactamase probed by molecular dynamics.
Roccatano D, Sbardella G, Aschi M, Amicosante G, Bossa C, Di Nola A
J Comput Aided Mol Des. 2005; 19(5):329-40.
PMID: 16184435
DOI: 10.1007/s10822-005-7003-0.
The development of beta-lactam antibiotics in response to the evolution of beta-lactamases.
Essack S
Pharm Res. 2001; 18(10):1391-9.
PMID: 11697463
DOI: 10.1023/a:1012272403776.
Efficient catalysis by beta-lactamase from Staphylococcus aureus PC1 accompanied by accumulation of an acyl-enzyme.
Qi X, Virden R
Biochem J. 1996; 315 ( Pt 2):537-41.
PMID: 8615826
PMC: 1217229.
DOI: 10.1042/bj3150537.