» Articles » PMID: 18029418

Saturation Mutagenesis of Asn152 Reveals a Substrate Selectivity Switch in P99 Cephalosporinase

Overview
Journal Protein Sci
Specialty Biochemistry
Date 2007 Nov 22
PMID 18029418
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

In class C beta-lactamases, the strictly conserved Asn152 forms part of an extended active-site hydrogen-bonding network. To probe its role in catalysis, all 19 mutants of Enterobacter cloacae P99 cephalosporinase Asn152 were simultaneously constructed and screened in Escherichia coli for their in vivo activity. The screen identified the previously uncharacterized mutants Asn152Ser, Asn152Thr, and Asn152Gly, which possess significant activity and altered substrate selectivity. In vitro measurement of Michaelis-Menten kinetic constants revealed that the Asn152Ser mutation causes a selectivity switch for penicillin G versus cefoxitin. Asn152Thr showed a 63-fold increase in k (cat) for oxacillin, a slow substrate for wild-type cephalosporinase. The results contribute to a growing body of data showing that mutation of highly conserved residues in the active site can result in substrate selectivity changes. The library screening method presented here would be applicable to substrate selectivity determination in other readily screenable enzymes.

Citing Articles

Analysis of the Structure and Function of FOX-4 Cephamycinase.

Lefurgy S, Malashkevich V, Aguilan J, Nieves E, Mundorff E, Biju B Antimicrob Agents Chemother. 2015; 60(2):717-28.

PMID: 26525784 PMC: 4750714. DOI: 10.1128/AAC.01887-15.


Effect of asparagine substitutions in the YXN loop of a class C β-lactamase of Acinetobacter baumannii on substrate and inhibitor kinetics.

Skalweit M, Li M, Taracila M Antimicrob Agents Chemother. 2014; 59(3):1472-7.

PMID: 25534745 PMC: 4325782. DOI: 10.1128/AAC.03537-14.


N152G, -S, and -T substitutions in CMY-2 β-lactamase increase catalytic efficiency for cefoxitin and inactivation rates for tazobactam.

Skalweit M, Li M, Conklin B, Taracila M, Hutton R Antimicrob Agents Chemother. 2013; 57(4):1596-602.

PMID: 23318801 PMC: 3623365. DOI: 10.1128/AAC.01334-12.


Site-saturation mutagenesis of position V117 in OXA-1 β-lactamase: effect of side chain polarity on enzyme carboxylation and substrate turnover.

Buchman J, Schneider K, Lloyd A, Pavlish S, Leonard D Biochemistry. 2012; 51(14):3143-50.

PMID: 22429123 PMC: 3336100. DOI: 10.1021/bi201896k.

References
1.
McRee D . XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. J Struct Biol. 1999; 125(2-3):156-65. DOI: 10.1006/jsbi.1999.4094. View

2.
Connolly A, WALEY S . Characterization of the membrane beta-lactamase in Bacillus cereus 569/H/9. Biochemistry. 1983; 22(20):4647-51. DOI: 10.1021/bi00289a006. View

3.
Caselli E, Powers R, Blasczcak L, Wu C, Prati F, Shoichet B . Energetic, structural, and antimicrobial analyses of beta-lactam side chain recognition by beta-lactamases. Chem Biol. 2001; 8(1):17-31. DOI: 10.1016/s1074-5521(00)00052-1. View

4.
Jacob F, Joris B, Dideberg O, Dusart J, Ghuysen J, Frere J . Engineering a novel beta-lactamase by a single point mutation. Protein Eng. 1990; 4(1):79-86. DOI: 10.1093/protein/4.1.79. View

5.
Joerger A, Mayer S, Fersht A . Mimicking natural evolution in vitro: an N-acetylneuraminate lyase mutant with an increased dihydrodipicolinate synthase activity. Proc Natl Acad Sci U S A. 2003; 100(10):5694-9. PMC: 156263. DOI: 10.1073/pnas.0531477100. View