» Articles » PMID: 25938965

Structural Basis for Carbapenem-hydrolyzing Mechanisms of Carbapenemases Conferring Antibiotic Resistance

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2015 May 5
PMID 25938965
Citations 79
Authors
Affiliations
Soon will be listed here.
Abstract

Carbapenems (imipenem, meropenem, biapenem, ertapenem, and doripenem) are β-lactam antimicrobial agents. Because carbapenems have the broadest spectra among all β-lactams and are primarily used to treat infections by multi-resistant Gram-negative bacteria, the emergence and spread of carbapenemases became a major public health concern. Carbapenemases are the most versatile family of β-lactamases that are able to hydrolyze carbapenems and many other β-lactams. According to the dependency of divalent cations for enzyme activation, carbapenemases can be divided into metallo-carbapenemases (zinc-dependent class B) and non-metallo-carbapenemases (zinc-independent classes A, C, and D). Many studies have provided various carbapenemase structures. Here we present a comprehensive and systematic review of three-dimensional structures of carbapenemase-carbapenem complexes as well as those of carbapenemases. We update recent studies in understanding the enzymatic mechanism of each class of carbapenemase, and summarize structural insights about regions and residues that are important in acquiring the carbapenemase activity.

Citing Articles

Multidrug resistant : A study on its pathogenesis and therapeutics.

Mukhopadhyay H, Bairagi A, Mukherjee A, Prasad A, Roy A, Nayak A Curr Res Microb Sci. 2025; 8():100331.

PMID: 39802320 PMC: 11718326. DOI: 10.1016/j.crmicr.2024.100331.


Genotypic Characterisation of Carbapenem-Resistant Enterobacteriaceae in a Tertiary Care Hospital in South India.

Anbazhagan S, Krishnan E A, S D, Sureshkumar M Cureus. 2025; 16(12):e75032.

PMID: 39749075 PMC: 11695047. DOI: 10.7759/cureus.75032.


Biochemical properties and substrate specificity of GOB-38 in Elizabethkingia anophelis.

Liu R, Liu Y, Qiu J, Ren Q, Wei C, Pan D Sci Rep. 2025; 15(1):351.

PMID: 39747310 PMC: 11695579. DOI: 10.1038/s41598-024-82748-2.


Structural insights into alterations in the substrate spectrum of serine-β-lactamase OXA-10 from by single amino acid substitutions.

Lee C, Park Y, Park H, Kwak K, Lee H, Yun J Emerg Microbes Infect. 2024; 13(1):2412631.

PMID: 39361442 PMC: 11497580. DOI: 10.1080/22221751.2024.2412631.


Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors.

Ortega-Balleza J, Vazquez-Jimenez L, Ortiz-Perez E, Avalos-Navarro G, Paz-Gonzalez A, Lara-Ramirez E Molecules. 2024; 29(16).

PMID: 39203022 PMC: 11356879. DOI: 10.3390/molecules29163944.


References
1.
Fonseca F, Chudyk E, van der Kamp M, Correia A, Mulholland A, Spencer J . The basis for carbapenem hydrolysis by class A β-lactamases: a combined investigation using crystallography and simulations. J Am Chem Soc. 2012; 134(44):18275-85. DOI: 10.1021/ja304460j. View

2.
Osterblad M, Kirveskari J, Hakanen A, Tissari P, Vaara M, Jalava J . Carbapenemase-producing Enterobacteriaceae in Finland: the first years (2008-11). J Antimicrob Chemother. 2012; 67(12):2860-4. DOI: 10.1093/jac/dks299. View

3.
Yong D, Toleman M, Bell J, Ritchie B, Pratt R, Ryley H . Genetic and biochemical characterization of an acquired subgroup B3 metallo-β-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Chemother. 2012; 56(12):6154-9. PMC: 3497169. DOI: 10.1128/AAC.05654-11. View

4.
Smith C, Frase H, Toth M, Kumarasiri M, Wiafe K, Munoz J . Structural basis for progression toward the carbapenemase activity in the GES family of β-lactamases. J Am Chem Soc. 2012; 134(48):19512-5. PMC: 3610538. DOI: 10.1021/ja308197j. View

5.
Borra P, Samuelsen O, Spencer J, Walsh T, Lorentzen M, Leiros H . Crystal structures of Pseudomonas aeruginosa GIM-1: active-site plasticity in metallo-β-lactamases. Antimicrob Agents Chemother. 2012; 57(2):848-54. PMC: 3553699. DOI: 10.1128/AAC.02227-12. View