» Articles » PMID: 7248469

The Stress-free Shape of the Red Blood Cell Membrane

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1981 Jun 1
PMID 7248469
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The two main proposals found in the literature for the stress-free shape of the red cell membrane are (a) the bioconcave shape and (b) the sphere of the same surface area. These possibilities are evaluated in this paper using theoretical modeling of equilibrium membrane shapes according to Zarda et al. (1977. J. Biomech. 10:211-221) and by comparison to experiments on red cells whose membrane shear modulus has been increased by treatment with diamide. Neither proposal is found to be compatible with all the experimental behaviour of native red cells. Neither proposal is found to be compatible with all the experimental behaviour of native red cells. To account for this discrepancy we propose that either the shear modulus of the native membrane is dependent on the membrane strain or that the bending stiffness is higher than estimated by Evans (1980. Biophys. J. 30:265-286). These studies suggest that the bioconcave disk is the more likely possibility for the stress-free shape.

Citing Articles

Effect of constitutive law on the erythrocyte membrane response to large strains.

Pepona M, Gounley J, Randles A Comput Math Appl. 2024; 132:145-160.

PMID: 38222470 PMC: 10785665. DOI: 10.1016/j.camwa.2022.12.009.


Effects of membrane viscoelasticity on the red blood cell dynamics in a microcapillary.

Gurbuz A, Pak O, Taylor M, Sivaselvan M, Sachs F Biophys J. 2023; 122(11):2230-2241.

PMID: 36639868 PMC: 10257124. DOI: 10.1016/j.bpj.2023.01.010.


Influence of storage and buffer composition on the mechanical behavior of flowing red blood cells.

Merlo A, Losserand S, Yaya F, Connes P, Faivre M, Lorthois S Biophys J. 2022; 122(2):360-373.

PMID: 36476993 PMC: 9892622. DOI: 10.1016/j.bpj.2022.12.005.


Constitutive Model of Erythrocyte Membranes with Distributions of Spectrin Orientations and Lengths.

Feng Z, Waugh R, Peng Z Biophys J. 2020; 119(11):2190-2204.

PMID: 33130121 PMC: 7732770. DOI: 10.1016/j.bpj.2020.10.025.


Computational Biomechanics of Human Red Blood Cells in Hematological Disorders.

Li X, Li H, Chang H, Lykotrafitis G, Karniadakis G J Biomech Eng. 2016; 139(2).

PMID: 27814430 PMC: 5395917. DOI: 10.1115/1.4035120.


References
1.
Canham P . The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol. 1970; 26(1):61-81. DOI: 10.1016/s0022-5193(70)80032-7. View

2.
Canham P, Parkinson D . The area and volume of single human erythrocytes during gradual osmotic swelling to hemolysis. Can J Physiol Pharmacol. 1970; 48(6):369-76. DOI: 10.1139/y70-059. View

3.
Evans E, Fung Y . Improved measurements of the erythrocyte geometry. Microvasc Res. 1972; 4(4):335-47. DOI: 10.1016/0026-2862(72)90069-6. View

4.
Skalak R, Tozeren A, Zarda R, Chien S . Strain energy function of red blood cell membranes. Biophys J. 1973; 13(3):245-64. PMC: 1484188. DOI: 10.1016/S0006-3495(73)85983-1. View

5.
Evans E . A new material concept for the red cell membrane. Biophys J. 1973; 13(9):926-40. PMC: 1484375. DOI: 10.1016/S0006-3495(73)86035-7. View