» Articles » PMID: 4697236

Strain Energy Function of Red Blood Cell Membranes

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1973 Mar 1
PMID 4697236
Citations 142
Authors
Affiliations
Soon will be listed here.
Abstract

The several widely different values of the elastic modulus of the human red blood cell membrane which have been reported in the literature are incorporated into a single strain energy function consisting of two terms. One term gives the small stresses and low elastic modulus which is observed when the red cell membrane is deformed at constant area. The second term contributes a large isotropic stress dependent on the change of area. The strain energy function is applied to the process of sphering of red blood cells in a hypotonic solution. It is shown that a nearly perfect sphere can result even though the red blood cell membrane is homogeneous in all areas of the cell. Results pertinent to sieving and micropipette experiments are also explored.

Citing Articles

Investigating the effect of turbulence on hemolysis through cell-resolved fluid-structure interaction simulations of individual red blood cells.

Rydquist G, Esmaily M Phys Rev Fluids. 2025; 9(7).

PMID: 40018510 PMC: 11867622. DOI: 10.1103/physrevfluids.9.073102.


Stomatocyte-discocyte-echinocyte transformations of erythrocyte modulated by membrane-cytoskeleton mechanical properties.

Wen H, Li X, Lu Y, Liu X, Hu G Biophys J. 2024; 124(2):267-283.

PMID: 39644092 PMC: 11788502. DOI: 10.1016/j.bpj.2024.12.001.


A High-Fidelity Computational Model for Predicting Blood Cell Trafficking and 3D Capillary Hemodynamics in Retinal Microvascular Networks.

Ebrahimi S, Bedggood P, Ding Y, Metha A, Bagchi P Invest Ophthalmol Vis Sci. 2024; 65(13):37.

PMID: 39546289 PMC: 11580294. DOI: 10.1167/iovs.65.13.37.


Surface-active microrobots can propel through blood faster than inert microrobots.

Wu C, Omori T, Ishikawa T PNAS Nexus. 2024; 3(10):pgae463.

PMID: 39474503 PMC: 11518928. DOI: 10.1093/pnasnexus/pgae463.


Hemodynamic Characteristics of a Tortuous Microvessel Using High-Fidelity Red Blood Cell Resolved Simulations.

Hossain M, Hu N, Kazempour A, Murfee W, Balogh P Microcirculation. 2024; 31(7):e12875.

PMID: 38989907 PMC: 11471383. DOI: 10.1111/micc.12875.


References
1.
Sutera S, Seshadri V, CROCE P, Hochmuth R . Capillary blood flow. II. Deformable model cells in tube flow. Microvasc Res. 1970; 2(4):420-33. DOI: 10.1016/0026-2862(70)90035-x. View

2.
Fung Y, Tong P . Theory of the sphering of red blood cells. Biophys J. 1968; 8(2):175-98. PMC: 1367371. DOI: 10.1016/S0006-3495(68)86484-7. View

3.
Rand R . MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. II. VISCOELASTIC BREAKDOWN OF THE MEMBRANE. Biophys J. 1964; 4:303-16. PMC: 1367508. DOI: 10.1016/s0006-3495(64)86784-9. View

4.
Singer S, Nicolson G . The fluid mosaic model of the structure of cell membranes. Science. 1972; 175(4023):720-31. DOI: 10.1126/science.175.4023.720. View

5.
Canham P, Parkinson D . The area and volume of single human erythrocytes during gradual osmotic swelling to hemolysis. Can J Physiol Pharmacol. 1970; 48(6):369-76. DOI: 10.1139/y70-059. View