» Articles » PMID: 6882860

Bending Elastic Modulus of Red Blood Cell Membrane Derived from Buckling Instability in Micropipet Aspiration Tests

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1983 Jul 1
PMID 6882860
Citations 123
Authors
Affiliations
Soon will be listed here.
Abstract

Observation of cell membrane buckling and cell folding in micropipette aspiration experiments was used to evaluate the bending rigidity of the red blood cell membrane. The suction pressure required to buckle the membrane surface initially was found to be about one-half to two-thirds of the pressure that caused the cell to fold and move up the pipet. A simple analytical model for buckling of a membrane disk supported at inner and outer radii correlates well with the observed buckling pressures vs. pipet radii. The buckling pressure is predicted to increase in inverse proportion to the cube of the pipet radius; also, the buckling pressure depends inversely on the radial distance to the toroidal rim of the cell, normalized by the pipet radius. As such, the pressure required to buckle the membrane with 1 X 10(-4) cm diam pipet would be about four times greater than with a 2 X 10(-4) cm pipet. This is the behavior observed experimentally. Based on analysis of the observed buckling data, the membrane bending or curvature elastic modulus is calculated to be 1.8 X 10(-12) dyn-cm.

Citing Articles

Improving normothermic machine perfusion and blood transfusion through biocompatible blood silicification.

Lei C, Li Z, Ma S, Zhang Q, Guo J, Ouyang Q Proc Natl Acad Sci U S A. 2024; 121(35):e2322418121.

PMID: 39159377 PMC: 11363281. DOI: 10.1073/pnas.2322418121.


Lipoprotein particles exhibit distinct mechanical properties.

Piontek M, Roos W J Extracell Biol. 2024; 1(12):e68.

PMID: 38938600 PMC: 11080718. DOI: 10.1002/jex2.68.


Effect of constitutive law on the erythrocyte membrane response to large strains.

Pepona M, Gounley J, Randles A Comput Math Appl. 2024; 132:145-160.

PMID: 38222470 PMC: 10785665. DOI: 10.1016/j.camwa.2022.12.009.


MEDUSA: A cloud-based tool for the analysis of X-ray diffuse scattering to obtain the bending modulus from oriented membrane stacks.

Himbert S, Gaboo D, Brookes E, Nagle J, Rheinstadter M PLoS Comput Biol. 2024; 20(1):e1011749.

PMID: 38190400 PMC: 10798642. DOI: 10.1371/journal.pcbi.1011749.


A cell-and-plasma numerical model reveals hemodynamic stress and flow adaptation in zebrafish microvessels after morphological alteration.

Maung Ye S, Phng L PLoS Comput Biol. 2023; 19(12):e1011665.

PMID: 38048371 PMC: 10721208. DOI: 10.1371/journal.pcbi.1011665.


References
1.
Hochmuth R, Mohandas N, BLACKSHEAR Jr P . Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J. 1973; 13(8):747-62. PMC: 1484338. DOI: 10.1016/S0006-3495(73)86021-7. View

2.
Evans E . A new material concept for the red cell membrane. Biophys J. 1973; 13(9):926-40. PMC: 1484375. DOI: 10.1016/S0006-3495(73)86035-7. View

3.
Evans E . New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Biophys J. 1973; 13(9):941-54. PMC: 1484376. DOI: 10.1016/S0006-3495(73)86036-9. View

4.
Deuling H, Helfrich W . Red blood cell shapes as explained on the basis of curvature elasticity. Biophys J. 1976; 16(8):861-8. PMC: 1334911. DOI: 10.1016/S0006-3495(76)85736-0. View

5.
Zarda P, Chien S, Skalak R . Elastic deformations of red blood cells. J Biomech. 1977; 10(4):211-21. DOI: 10.1016/0021-9290(77)90044-6. View