Sainburg T, Gentner T
Front Behav Neurosci. 2022; 15:811737.
PMID: 34987365
PMC: 8721140.
DOI: 10.3389/fnbeh.2021.811737.
Trevino M, Lobarinas E, Maulden A, Heinz M
J Acoust Soc Am. 2019; 146(5):3710.
PMID: 31795699
PMC: 6881193.
DOI: 10.1121/1.5132950.
Brown A, Anbuhl K, Gilmer J, Tollin D
J Neurophysiol. 2019; 122(3):1110-1122.
PMID: 31314646
PMC: 6766741.
DOI: 10.1152/jn.00057.2019.
Ewert D, Hu N, Du X, Li W, West M, Choi C
PLoS One. 2017; 12(8):e0183089.
PMID: 28832600
PMC: 5568441.
DOI: 10.1371/journal.pone.0183089.
Dragicevic C, Aedo C, Leon A, Bowen M, Jara N, Terreros G
J Assoc Res Otolaryngol. 2015; 16(2):223-40.
PMID: 25663383
PMC: 4368653.
DOI: 10.1007/s10162-015-0509-9.
The value of a kurtosis metric in estimating the hazard to hearing of complex industrial noise exposures.
Qiu W, Hamernik R, Davis R
J Acoust Soc Am. 2013; 133(5):2856-66.
PMID: 23654391
PMC: 3663850.
DOI: 10.1121/1.4799813.
Inner-ear sound pressures near the base of the cochlea in chinchilla: further investigation.
Ravicz M, Rosowski J
J Acoust Soc Am. 2013; 133(4):2208-23.
PMID: 23556590
PMC: 3631268.
DOI: 10.1121/1.4792139.
Cell-cell junctions: a target of acoustic overstimulation in the sensory epithelium of the cochlea.
Zheng G, Hu B
BMC Neurosci. 2012; 13:71.
PMID: 22712683
PMC: 3407512.
DOI: 10.1186/1471-2202-13-71.
Signal processing in the cochlea: the structure equations.
Reimann H
J Math Neurosci. 2012; 1(1):5.
PMID: 22656650
PMC: 3280891.
DOI: 10.1186/2190-8567-1-5.
Von Békésy and cochlear mechanics.
Olson E, Duifhuis H, Steele C
Hear Res. 2012; 293(1-2):31-43.
PMID: 22633943
PMC: 3572775.
DOI: 10.1016/j.heares.2012.04.017.
Waves on Reissner's membrane: a mechanism for the propagation of otoacoustic emissions from the cochlea.
Reichenbach T, Stefanovic A, Nin F, Hudspeth A
Cell Rep. 2012; 1(4):374-84.
PMID: 22580949
PMC: 3348656.
DOI: 10.1016/j.celrep.2012.02.013.
Reduced formation of oxidative stress biomarkers and migration of mononuclear phagocytes in the cochleae of chinchilla after antioxidant treatment in acute acoustic trauma.
Du X, Choi C, Chen K, Cheng W, Floyd R, Kopke R
Int J Otolaryngol. 2011; 2011:612690.
PMID: 21961007
PMC: 3179894.
DOI: 10.1155/2011/612690.
Effects of electrical stimulation of olivocochlear fibers in cochlear potentials in the chinchilla.
Elgueda D, Delano P, Robles L
J Assoc Res Otolaryngol. 2011; 12(3):317-27.
PMID: 21365333
PMC: 3085692.
DOI: 10.1007/s10162-011-0260-9.
Feed-forward and feed-backward amplification model from cochlear cytoarchitecture: an interspecies comparison.
Yoon Y, Steele C, Puria S
Biophys J. 2010; 100(1):1-10.
PMID: 21190651
PMC: 3010833.
DOI: 10.1016/j.bpj.2010.11.039.
Middle-ear pressure gain and cochlear partition differential pressure in chinchilla.
Ravicz M, Slama M, Rosowski J
Hear Res. 2009; 263(1-2):16-25.
PMID: 19945521
PMC: 2866808.
DOI: 10.1016/j.heares.2009.11.014.
The passive cable properties of hair cell stereocilia and their contribution to somatic capacitance measurements.
Breneman K, Highstein S, Boyle R, Rabbitt R
Biophys J. 2008; 96(1):1-8.
PMID: 18849411
PMC: 2710037.
DOI: 10.1529/biophysj.108.137356.
Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations.
Temchin A, Rich N, Ruggero M
J Neurophysiol. 2008; 100(5):2889-98.
PMID: 18701751
PMC: 2585409.
DOI: 10.1152/jn.90637.2008.
Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions.
Shera C, Tubis A, Talmadge C
J Acoust Soc Am. 2008; 124(1):381-95.
PMID: 18646984
PMC: 2677332.
DOI: 10.1121/1.2917805.
Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model.
Choi Y, Lee S, Parham K, Neely S, Kim D
J Acoust Soc Am. 2008; 123(5):2651-69.
PMID: 18529185
PMC: 2481564.
DOI: 10.1121/1.2902184.
Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
Harding G, Bohne B, Lee S, Salt A
Hear Res. 2007; 225(1-2):128-38.
PMID: 17300889
PMC: 2593403.
DOI: 10.1016/j.heares.2007.01.016.