Rios Miguel A, Jetten M, Welte C
Water Res X. 2020; 9:100065.
PMID: 32984801
PMC: 7494797.
DOI: 10.1016/j.wroa.2020.100065.
Caracciolo A, Grenni P, Garbini G, Rolando L, Campanale C, Aimola G
Front Microbiol. 2020; 11:2073.
PMID: 32983051
PMC: 7477336.
DOI: 10.3389/fmicb.2020.02073.
Emelyanova E, Solyanikova I
Biosensors (Basel). 2019; 9(3).
PMID: 31491996
PMC: 6784447.
DOI: 10.3390/bios9030106.
Phale P, Shah B, Malhotra H
Genes (Basel). 2019; 10(8).
PMID: 31357661
PMC: 6723655.
DOI: 10.3390/genes10080569.
Arora P, Bae H
Microb Cell Fact. 2014; 13(1):31.
PMID: 24589366
PMC: 3975901.
DOI: 10.1186/1475-2859-13-31.
Influence of root exudates on the bacterial degradation of chlorobenzoic acids.
Vrchotova B, Lovecka P, Drazkova M, Mackova M, Macek T
ScientificWorldJournal. 2013; 2013:872026.
PMID: 24222753
PMC: 3809935.
DOI: 10.1155/2013/872026.
Catabolic plasmids of environmental and ecological significance.
Sayler G, Hooper S, Layton A, King J
Microb Ecol. 2013; 19(1):1-20.
PMID: 24196251
DOI: 10.1007/BF02015050.
Anomalies in the enumeration of starved bacteria on culture media containing nalidic acid and tetracycline.
Genthner F, Upadhyay J, Campbell R, Genthner B
Microb Ecol. 2013; 20(1):283-8.
PMID: 24193980
DOI: 10.1007/BF02543883.
Probing the functional diversity of global pristine soil communities with 3-chlorobenzoate reveals that communities of generalists dominate catabolic transformation.
Rhodes A, Fulthorpe R, Tiedje J
Appl Environ Microbiol. 2013; 79(22):6932-40.
PMID: 23995940
PMC: 3811530.
DOI: 10.1128/AEM.01905-13.
Uptake of Benzoic Acid and Chloro-Substituted Benzoic Acids by Alcaligenes denitrificans BRI 3010 and BRI 6011.
Miguez C, Greer C, Ingram J, MacLEOD R
Appl Environ Microbiol. 1995; 61(12):4152-9.
PMID: 16535175
PMC: 1388640.
DOI: 10.1128/aem.61.12.4152-4159.1995.
Degradation of 4-Chlorobenzoate by Facultatively Alkalophilic Arthrobacter sp. Strain SB8.
Shimao M, Onishi S, Mizumori S, Kato N, Sakazawa C
Appl Environ Microbiol. 1989; 55(2):478-82.
PMID: 16347854
PMC: 184134.
DOI: 10.1128/aem.55.2.478-482.1989.
Adaptation of aquatic microbial communities to hg stress.
Barkay T
Appl Environ Microbiol. 1987; 53(12):2725-32.
PMID: 16347488
PMC: 204188.
DOI: 10.1128/aem.53.12.2725-2732.1987.
Bacterial nitration of 4-chlorobiphenyl.
Sylvestre M, Masse R, Messier F, Fauteux J, Bisaillon J, Beaudet R
Appl Environ Microbiol. 1982; 44(4):871-7.
PMID: 16346111
PMC: 242111.
DOI: 10.1128/aem.44.4.871-877.1982.
Amino acids in positions 48, 52, and 73 differentiate the substrate specificities of the highly homologous chlorocatechol 1,2-dioxygenases CbnA and TcbC.
Liu S, Ogawa N, Senda T, Hasebe A, Miyashita K
J Bacteriol. 2005; 187(15):5427-36.
PMID: 16030237
PMC: 1196051.
DOI: 10.1128/JB.187.15.5427-5436.2005.
Transferable antibiotic resistance elements in Haemophilus influenzae share a common evolutionary origin with a diverse family of syntenic genomic islands.
Mohd-Zain Z, Turner S, Cerdeno-Tarraga A, Lilley A, Inzana T, Duncan A
J Bacteriol. 2004; 186(23):8114-22.
PMID: 15547285
PMC: 529066.
DOI: 10.1128/JB.186.23.8114-8122.2004.
Kinetics of biotransformation of 2,4-dichlorophenol using UASB-reactor.
Atuanya E, Chakrabarti T
Environ Monit Assess. 2004; 96(1-3):129-41.
PMID: 15327153
DOI: 10.1023/b:emas.0000031720.86980.2e.
Two chlorocatechol catabolic gene modules on plasmid pJP4.
Schlomann M
J Bacteriol. 2002; 184(15):4049-53.
PMID: 12107120
PMC: 135218.
DOI: 10.1128/JB.184.15.4049-4053.2002.
Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71.
Potrawfke T, Armengaud J, Wittich R
J Bacteriol. 2001; 183(3):997-1011.
PMID: 11208799
PMC: 94968.
DOI: 10.1128/JB.183.3.997-1011.2001.
Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9.
Ogawa N, McFall S, Klem T, Miyashita K, Chakrabarty A
J Bacteriol. 1999; 181(21):6697-705.
PMID: 10542171
PMC: 94134.
DOI: 10.1128/JB.181.21.6697-6705.1999.
The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on....
Ogawa N, Miyashita K
Appl Environ Microbiol. 1999; 65(2):724-31.
PMID: 9925607
PMC: 91086.
DOI: 10.1128/AEM.65.2.724-731.1999.