Egozarian N, Emelyanova E, Suzina N, Sazonova O, Polivtseva V, Anokhina T
Microorganisms. 2024; 12(3).
PMID: 38543647
PMC: 10975229.
DOI: 10.3390/microorganisms12030597.
Gao M, Gu X, Satterlee T, Duke M, Scheffler B, Gold S
Front Fungal Biol. 2023; 3:923112.
PMID: 37746160
PMC: 10512309.
DOI: 10.3389/ffunb.2022.923112.
Emelyanova E, Ramanaiah S, Prisyazhnaya N, Shumkova E, Plotnikova E, Wu Y
Microorganisms. 2023; 11(1).
PMID: 36677434
PMC: 9861648.
DOI: 10.3390/microorganisms11010141.
Pujar N, Premakshi H, Laad S, Pattar S, Mirjankar M, Kamanavalli C
World J Microbiol Biotechnol. 2018; 34(8):112.
PMID: 29980862
DOI: 10.1007/s11274-018-2494-8.
Rauwerdink A, Kazlauskas R
ACS Catal. 2017; 5(10):6153-6176.
PMID: 28580193
PMC: 5455348.
DOI: 10.1021/acscatal.5b01539.
Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm.
Stuart R, Mayali X, Boaro A, Zemla A, Everroad R, Nilson D
mBio. 2016; 7(3).
PMID: 27353754
PMC: 4937211.
DOI: 10.1128/mBio.00650-16.
Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum GD12 during antagonistic interactions with Sclerotinia sclerotiorum in soil.
Shaw S, Le Cocq K, Paszkiewicz K, Moore K, Winsbury R, de Torres Zabala M
Mol Plant Pathol. 2016; 17(9):1425-1441.
PMID: 27187266
PMC: 6638342.
DOI: 10.1111/mpp.12429.
Two structurally different dienelactone hydrolases (TfdEI and TfdEII) from Cupriavidus necator JMP134 plasmid pJP4 catalyse cis- and trans-dienelactones with similar efficiency.
Kumar A, Pillay B, Olaniran A
PLoS One. 2014; 9(7):e101801.
PMID: 25054964
PMC: 4108320.
DOI: 10.1371/journal.pone.0101801.
Crystallization of dienelactone hydrolase in two space groups: structural changes caused by crystal packing.
Porter J, Carr P, Collyer C, Ollis D
Acta Crystallogr F Struct Biol Commun. 2014; 70(Pt 7):884-9.
PMID: 25005082
PMC: 4089525.
DOI: 10.1107/S2053230X1401108X.
Molecular and biochemical characterization of the 5-nitroanthranilic acid degradation pathway in Bradyrhizobium sp. strain JS329.
Qu Y, Spain J
J Bacteriol. 2011; 193(12):3057-63.
PMID: 21498645
PMC: 3133195.
DOI: 10.1128/JB.01188-10.
Human carboxymethylenebutenolidase as a bioactivating hydrolase of olmesartan medoxomil in liver and intestine.
Ishizuka T, Fujimori I, Kato M, Noji-Sakikawa C, Saito M, Yoshigae Y
J Biol Chem. 2010; 285(16):11892-902.
PMID: 20177059
PMC: 2852926.
DOI: 10.1074/jbc.M109.072629.
Modified 3-oxoadipate pathway for the biodegradation of methylaromatics in Pseudomonas reinekei MT1.
Marin M, Perez-Pantoja D, Donoso R, Wray V, Gonzalez B, Pieper D
J Bacteriol. 2010; 192(6):1543-52.
PMID: 20061479
PMC: 2832525.
DOI: 10.1128/JB.01208-09.
Characterization of a gene cluster involved in 4-chlorocatechol degradation by Pseudomonas reinekei MT1.
Camara B, Nikodem P, Bielecki P, Bobadilla R, Junca H, Pieper D
J Bacteriol. 2009; 191(15):4905-15.
PMID: 19465655
PMC: 2715737.
DOI: 10.1128/JB.00331-09.
A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate.
Camara B, Bielecki P, Kaminski F, Martins Dos Santos V, Plumeier I, Nikodem P
J Bacteriol. 2006; 189(5):1664-74.
PMID: 17172348
PMC: 1855727.
DOI: 10.1128/JB.01192-06.
The key role of chlorocatechol 1,2-dioxygenase in phytoremoval and degradation of catechol by transgenic Arabidopsis.
Liao Y, Zhou X, Yu J, Cao Y, Li X, Kuai B
Plant Physiol. 2006; 142(2):620-8.
PMID: 16935988
PMC: 1586047.
DOI: 10.1104/pp.106.085936.
Evidence that Formation of Protoanemonin from Metabolites of 4-Chlorobiphenyl Degradation Negatively Affects the Survival of 4-Chlorobiphenyl-Cometabolizing Microorganisms.
Blasco R, Mallavarapu M, Wittich R, Timmis K, Pieper D
Appl Environ Microbiol. 1997; 63(2):427-34.
PMID: 16535507
PMC: 1389513.
DOI: 10.1128/aem.63.2.427-434.1997.
Construction of a Novel Polychlorinated Biphenyl-Degrading Bacterium: Utilization of 3,4'-Dichlorobiphenyl by Pseudomonas acidovorans M3GY.
McCullar M, Brenner V, Adams R, Focht D
Appl Environ Microbiol. 1994; 60(10):3833-9.
PMID: 16349419
PMC: 201892.
DOI: 10.1128/aem.60.10.3833-3839.1994.
Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by pseudomonas strains.
Sander P, Wittich R, Fortnagel P, Wilkes H, Francke W
Appl Environ Microbiol. 1991; 57(5):1430-40.
PMID: 16348484
PMC: 182966.
DOI: 10.1128/aem.57.5.1430-1440.1991.
Improved degradation of monochlorophenols by a constructed strain.
Schwien U, Schmidt E
Appl Environ Microbiol. 1982; 44(1):33-9.
PMID: 16346066
PMC: 241964.
DOI: 10.1128/aem.44.1.33-39.1982.
Catabolism of Naphthalenesulfonic Acids by Pseudomonas sp. A3 and Pseudomonas sp. C22.
Brilon C, BECKMANN W, Knackmuss H
Appl Environ Microbiol. 1981; 42(1):44-55.
PMID: 16345814
PMC: 243959.
DOI: 10.1128/aem.42.1.44-55.1981.