» Articles » PMID: 1326515

Proton Transfer and Energy Coupling in the Bacteriorhodopsin Photocycle

Overview
Publisher Springer
Date 1992 Apr 1
PMID 1326515
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

A description of the rate constants and the energetics of the elementary reaction steps of the photocycle of bacteriorhodopsin has been helpful in understanding the mechanism of proton transport in this light-driven pump. The evidence suggests a single unbranched reaction sequence, BR-hv----K in equilibrium with L in equilibrium with M1----M2 in equilibrium with N in equilibrium with O----BR, where coupling to the proton-motive force is at the energetically and mechanistically important M1----M2 step. The consequences of site-specific mutations expressed homologously in Halobacterium halobium have revealed characteristics of the Schiff base deprotonation in the L----M1 reaction, the reorientation of the Schiff base from the extracellular to the cytoplasmic side in the M1----M2 reaction, and the reprotonation of the Schiff base in the M2----N reaction.

Citing Articles

Actinorhodopsin: an efficient and robust light-driven proton pump for bionanotechnological applications.

Ayoub N, Djabeur N, Harder D, Jeckelmann J, Ucurum Z, Hirschi S Sci Rep. 2025; 15(1):4054.

PMID: 39900604 PMC: 11790970. DOI: 10.1038/s41598-025-88055-8.


Reversible Photochromic Reactions of Bacteriorhodopsin from at Femto- and Picosecond Times.

Smitienko O, Feldman T, Shelaev I, Gostev F, Aybush A, Cherepanov D Molecules. 2024; 29(20).

PMID: 39459214 PMC: 11510181. DOI: 10.3390/molecules29204847.


Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins.

Inoue K Adv Exp Med Biol. 2021; 1293:89-126.

PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6.


Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2.

Kuhne J, Vierock J, Tennigkeit S, Dreier M, Wietek J, Petersen D Proc Natl Acad Sci U S A. 2019; 116(19):9380-9389.

PMID: 31004059 PMC: 6510988. DOI: 10.1073/pnas.1818707116.


The evolving capabilities of rhodopsin-based genetically encoded voltage indicators.

Gong Y Curr Opin Chem Biol. 2015; 27:84-9.

PMID: 26143170 PMC: 4571180. DOI: 10.1016/j.cbpa.2015.05.006.


References
1.
Kakitani H, Kakitani T, Rodman H, Honig B . On the mechanism of wavelength regulation in visual pigments. Photochem Photobiol. 1985; 41(4):471-9. DOI: 10.1111/j.1751-1097.1985.tb03514.x. View

2.
Henderson R, Baldwin J, Ceska T, Zemlin F, Beckmann E, Downing K . Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990; 213(4):899-929. DOI: 10.1016/S0022-2836(05)80271-2. View

3.
Milder S . Correlation between absorption maxima and thermal isomerization rates in bacteriorhodopsin. Biophys J. 2009; 60(2):440-6. PMC: 1260081. DOI: 10.1016/S0006-3495(91)82070-7. View

4.
Mogi T, Stern L, Marti T, Chao B, Khorana H . Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc Natl Acad Sci U S A. 1988; 85(12):4148-52. PMC: 280383. DOI: 10.1073/pnas.85.12.4148. View

5.
Oesterhelt D, Tittor J, Bamberg E . A unifying concept for ion translocation by retinal proteins. J Bioenerg Biomembr. 1992; 24(2):181-91. DOI: 10.1007/BF00762676. View