Kohno Y, Ito A, Okamoto A, Yamagami R, Hirata A, Hori H
J Biochem. 2023; 175(1):43-56.
PMID: 37844264
PMC: 11640301.
DOI: 10.1093/jb/mvad076.
Hori H
Genes (Basel). 2023; 14(2).
PMID: 36833309
PMC: 9957541.
DOI: 10.3390/genes14020382.
Sattler L, Graumann P
Front Microbiol. 2021; 12:760857.
PMID: 34867890
PMC: 8637298.
DOI: 10.3389/fmicb.2021.760857.
Zhang J
Wiley Interdiscip Rev RNA. 2020; 11(6):e1600.
PMID: 32633085
PMC: 7583486.
DOI: 10.1002/wrna.1600.
Hirata A, Suzuki T, Nagano T, Fujii D, Okamoto M, Sora M
J Bacteriol. 2019; 201(21).
PMID: 31405913
PMC: 6779453.
DOI: 10.1128/JB.00448-19.
Crystal structure and catalytic mechanism of the essential mG37 tRNA methyltransferase TrmD from .
Jaroensuk J, Wong Y, Zhong W, Liew C, Maenpuen S, Sahili A
RNA. 2019; 25(11):1481-1496.
PMID: 31399541
PMC: 6795141.
DOI: 10.1261/rna.066746.118.
A Family Divided: Distinct Structural and Mechanistic Features of the SpoU-TrmD (SPOUT) Methyltransferase Superfamily.
Krishnamohan A, Jackman J
Biochemistry. 2018; 58(5):336-345.
PMID: 30457841
PMC: 6541868.
DOI: 10.1021/acs.biochem.8b01047.
Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA.
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C
Microorganisms. 2018; 6(4).
PMID: 30347855
PMC: 6313347.
DOI: 10.3390/microorganisms6040110.
Structural and biochemical analysis of the dual-specificity Trm10 enzyme from prompts reconsideration of its catalytic mechanism.
Singh R, Feller A, Roovers M, Van Elder D, Wauters L, Droogmans L
RNA. 2018; 24(8):1080-1092.
PMID: 29848639
PMC: 6049504.
DOI: 10.1261/rna.064345.117.
Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10.
Krishnamohan A, Jackman J
Nucleic Acids Res. 2017; 45(15):9019-9029.
PMID: 28911116
PMC: 5587797.
DOI: 10.1093/nar/gkx620.
Small methyltransferase RlmH assembles a composite active site to methylate a ribosomal pseudouridine.
Koh C, Madireddy R, Beane T, Zamore P, Korostelev A
Sci Rep. 2017; 7(1):969.
PMID: 28428565
PMC: 5430550.
DOI: 10.1038/s41598-017-01186-5.
Trm5 and TrmD: Two Enzymes from Distinct Origins Catalyze the Identical tRNA Modification, m¹G37.
Goto-Ito S, Ito T, Yokoyama S
Biomolecules. 2017; 7(1).
PMID: 28335556
PMC: 5372744.
DOI: 10.3390/biom7010032.
Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA.
Hori H
Biomolecules. 2017; 7(1).
PMID: 28264529
PMC: 5372735.
DOI: 10.3390/biom7010023.
A genetically encoded fluorescent tRNA is active in live-cell protein synthesis.
Masuda I, Igarashi T, Sakaguchi R, Nitharwal R, Takase R, Han K
Nucleic Acids Res. 2016; 45(7):4081-4093.
PMID: 27956502
PMC: 5397188.
DOI: 10.1093/nar/gkw1229.
Kinetic Analysis of tRNA Methyltransferases.
Hou Y, Masuda I
Methods Enzymol. 2015; 560:91-116.
PMID: 26253967
PMC: 4860815.
DOI: 10.1016/bs.mie.2015.04.012.
Structural basis for methyl-donor-dependent and sequence-specific binding to tRNA substrates by knotted methyltransferase TrmD.
Ito T, Masuda I, Yoshida K, Goto-Ito S, Sekine S, Suh S
Proc Natl Acad Sci U S A. 2015; 112(31):E4197-205.
PMID: 26183229
PMC: 4534213.
DOI: 10.1073/pnas.1422981112.
tRNAs as antibiotic targets.
Chopra S, Reader J
Int J Mol Sci. 2014; 16(1):321-49.
PMID: 25547494
PMC: 4307249.
DOI: 10.3390/ijms16010321.
Methylated nucleosides in tRNA and tRNA methyltransferases.
Hori H
Front Genet. 2014; 5:144.
PMID: 24904644
PMC: 4033218.
DOI: 10.3389/fgene.2014.00144.
The temperature sensitivity of a mutation in the essential tRNA modification enzyme tRNA methyltransferase D (TrmD).
Masuda I, Sakaguchi R, Liu C, Gamper H, Hou Y
J Biol Chem. 2013; 288(40):28987-96.
PMID: 23986443
PMC: 3789996.
DOI: 10.1074/jbc.M113.485797.
Conservation of structure and mechanism by Trm5 enzymes.
Christian T, Gamper H, Hou Y
RNA. 2013; 19(9):1192-9.
PMID: 23887145
PMC: 3753926.
DOI: 10.1261/rna.039503.113.