» Articles » PMID: 28428565

Small Methyltransferase RlmH Assembles a Composite Active Site to Methylate a Ribosomal Pseudouridine

Overview
Journal Sci Rep
Specialty Science
Date 2017 Apr 22
PMID 28428565
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Eubacterial ribosomal large-subunit methyltransferase H (RlmH) methylates 23S ribosomal RNA pseudouridine 1915 (Ψ1915), which lies near the ribosomal decoding center. The smallest member of the SPOUT superfamily of methyltransferases, RlmH lacks the RNA recognition domain found in larger methyltransferases. The catalytic mechanism of RlmH enzyme is unknown. Here, we describe the structures of RlmH bound to S-adenosyl-methionine (SAM) and the methyltransferase inhibitor sinefungin. Our structural and biochemical studies reveal catalytically essential residues in the dimer-mediated asymmetrical active site. One monomer provides the SAM-binding site, whereas the conserved C-terminal tail of the second monomer provides residues essential for catalysis. Our findings elucidate the mechanism by which a small protein dimer assembles a functionally asymmetric architecture.

Citing Articles

SFP6 fluorescent probes for imaging SAM dynamics in living cells.

Zhang S, Li J, Cao G Mikrochim Acta. 2025; 192(3):180.

PMID: 39982573 DOI: 10.1007/s00604-025-07039-7.


Protein semisynthesis reveals plasticity in HECT E3 ubiquitin ligase mechanisms.

Jiang H, Miller B, Viennet T, Kim H, Lee K, Arthanari H Nat Chem. 2024; 16(11):1894-1905.

PMID: 39030419 DOI: 10.1038/s41557-024-01576-z.


Tied up in knots: Untangling substrate recognition by the SPOUT methyltransferases.

Strassler S, Bowles I, Dey D, Jackman J, Conn G J Biol Chem. 2022; 298(10):102393.

PMID: 35988649 PMC: 9508554. DOI: 10.1016/j.jbc.2022.102393.


RNA methylation in chloroplasts or mitochondria in plants.

Manduzio S, Kang H RNA Biol. 2021; 18(12):2127-2135.

PMID: 33779501 PMC: 8632092. DOI: 10.1080/15476286.2021.1909321.


Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification.

Thomas S, Whitehouse A, Brown K, Burbaud S, Belardinelli J, Sangen J Nucleic Acids Res. 2020; 48(14):8099-8112.

PMID: 32602532 PMC: 7641325. DOI: 10.1093/nar/gkaa539.


References
1.
Takata Y, Huang Y, Komoto J, Yamada T, Konishi K, Ogawa H . Catalytic mechanism of glycine N-methyltransferase. Biochemistry. 2003; 42(28):8394-402. DOI: 10.1021/bi034245a. View

2.
Sergiev P, Golovina A, Osterman I, Nesterchuk M, Sergeeva O, Chugunova A . N6-Methylated Adenosine in RNA: From Bacteria to Humans. J Mol Biol. 2015; 428(10 Pt B):2134-45. DOI: 10.1016/j.jmb.2015.12.013. View

3.
Liang X, Liu Q, Fournier M . Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA. 2009; 15(9):1716-28. PMC: 2743053. DOI: 10.1261/rna.1724409. View

4.
Kurowski M, Sasin J, Feder M, Debski J, Bujnicki J . Characterization of the cofactor-binding site in the SPOUT-fold methyltransferases by computational docking of S-adenosylmethionine to three crystal structures. BMC Bioinformatics. 2003; 4:9. PMC: 153507. DOI: 10.1186/1471-2105-4-9. View

5.
Evans P, Murshudov G . How good are my data and what is the resolution?. Acta Crystallogr D Biol Crystallogr. 2013; 69(Pt 7):1204-14. PMC: 3689523. DOI: 10.1107/S0907444913000061. View