» Articles » PMID: 25547494

TRNAs As Antibiotic Targets

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2014 Dec 31
PMID 25547494
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial "stringent response" mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.

Citing Articles

Dynamics of diversified A-to-I editing in Streptococcus pyogenes is governed by changes in mRNA stability.

Wulff T, Hahnke K, Lecrivain A, Schmidt K, Ahmed-Begrich R, Finstermeier K Nucleic Acids Res. 2024; 52(18):11234-11253.

PMID: 39087550 PMC: 11472039. DOI: 10.1093/nar/gkae629.


Unraveling bacterial stress responses: implications for next-generation antimicrobial solutions.

Avci F World J Microbiol Biotechnol. 2024; 40(9):285.

PMID: 39073503 PMC: 11286680. DOI: 10.1007/s11274-024-04090-z.


Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections.

Theuretzbacher U, Blasco B, Duffey M, Piddock L Nat Rev Drug Discov. 2023; 22(12):957-975.

PMID: 37833553 DOI: 10.1038/s41573-023-00791-6.


Proteomic Profiling Reveals Cytotoxic Mechanisms of Action and Adaptive Mechanisms of Resistance in : Treatment with and .

Mohammed A, Aabed K, Benabdelkamel H, Shami A, Alotaibi M, Alanazi M ACS Omega. 2023; 8(14):12980-12991.

PMID: 37065043 PMC: 10099446. DOI: 10.1021/acsomega.3c00168.


Computer-aided genomic data analysis of drug-resistant for the Identification of alternative therapeutic targets.

Qasim A, Jaan S, Wara T, Shehroz M, Nishan U, Shams S Front Cell Infect Microbiol. 2023; 13:1017315.

PMID: 37033487 PMC: 10080061. DOI: 10.3389/fcimb.2023.1017315.


References
1.
Liu X, Chen Y, Fierke C . A real-time fluorescence polarization activity assay to screen for inhibitors of bacterial ribonuclease P. Nucleic Acids Res. 2014; 42(20):e159. PMC: 4227764. DOI: 10.1093/nar/gku850. View

2.
Watanabe T, Sugiyama T, Takahashi M, Shima J, Yamashita K, Izaki K . New polyenic antibiotics active against gram-positive and gram-negative bacteria. IV. Structural elucidation of enacyloxin IIa. J Antibiot (Tokyo). 1992; 45(4):470-5. DOI: 10.7164/antibiotics.45.470. View

3.
Dewan V, Reader J, Forsyth K . Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top Curr Chem. 2013; 344:293-329. DOI: 10.1007/128_2013_425. View

4.
Harris B, Kaiser D, Singer M . The guanosine nucleotide (p)ppGpp initiates development and A-factor production in myxococcus xanthus. Genes Dev. 1998; 12(7):1022-35. PMC: 316683. DOI: 10.1101/gad.12.7.1022. View

5.
Kalavrizioti D, Vourekas A, Tekos A, Tsagla A, Stathopoulos C, Drainas D . Kinetics of inhibition of ribonuclease P activity by peptidyltransferase inhibitors. Effect of antibiotics on RNase P. Mol Biol Rep. 2003; 30(1):9-14. DOI: 10.1023/a:1022290110116. View