» Articles » PMID: 6195595

Carbon-13 NMR in Conformational Analysis of Nucleic Acid Fragments. Heteronuclear Chemical Shift Correlation Spectroscopy of RNA Constituents

Overview
Specialty Biochemistry
Date 1983 Oct 25
PMID 6195595
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The assignment of the non-quaternary 13C resonances by means of two-dimensional heteronuclear chemical shift correlation spectroscopy is presented for several oligoribonucleotides: The dimers m6(2)AU, m6(2)Am6(2)A and mpUm6(2)A and the trimers m6(2)AUm6(2)A and m4(2)Cm4(2)Cm6(2)A. The temperature and concentration dependency of the 13C chemical shifts are studied with emphasis on the behaviour of the dimer m6(2)AU. The present study shows that in the 5-50 mM range the concentration-dependent chemical shift changes of the ribose carbons are negligible compared to chemical shift changes due to intramolecular events. All compounds studied show a surprising correlation between the chemical shifts of the carbon atoms of the ribose ring and the sugar conformational equilibrium as expressed by the percentage N or S conformer. Thus the chemical shift data can be used to obtain the thermodynamical parameters of the two-state N/S equilibrium. Parameters deduced for m6(2)AU are Tm = 306 K and delta S = -25 cal mol-1 K-1, which values are in satisfactory agreement with results obtained earlier from 1H NMR and from Circular Dichroism.

Citing Articles

Magic angle spinning NMR of viruses.

Quinn C, Lu M, Suiter C, Hou G, Zhang H, Polenova T Prog Nucl Magn Reson Spectrosc. 2015; 86-87:21-40.

PMID: 25919197 PMC: 4413014. DOI: 10.1016/j.pnmrs.2015.02.003.


Influence of the glycosidic torsion angle on 13C and 15N shifts in guanosine nucleotides: investigations of G-tetrad models with alternating syn and anti bases.

Greene K, Wang Y, Live D J Biomol NMR. 1995; 5(4):333-8.

PMID: 7647551 DOI: 10.1007/BF00182274.


Synthesis, complete 1H assignments and conformations of the self-complementary hexadeoxyribonucleotide [d(CpGpApTpCpG)]2 and its fragments by high field NMR.

Lown J, Hanstock C, Bleackley R, Imbach J, Rayner B, Vasseur J Nucleic Acids Res. 1984; 12(5):2519-33.

PMID: 6709499 PMC: 318681. DOI: 10.1093/nar/12.5.2519.


Carbon-13 NMR in conformational analysis of nucleic acid fragments. 3. The magnitude of torsional angle epsilon in d(TpA) from CCOP and HCOP NMR coupling constants.

Lankhorst P, Haasnoot C, Erkelens C, Altona C Nucleic Acids Res. 1984; 12(13):5419-28.

PMID: 6087285 PMC: 318928. DOI: 10.1093/nar/12.13.5419.


Carbon-13 NMR in conformational analysis of nucleic acid fragments. 4. The torsion angle distribution about the C3'-O3' bond in DNA constituents.

Lankhorst P, Haasnoot C, Erkelens C, Westerink H, van der Marel G, VAN Boom J Nucleic Acids Res. 1985; 13(3):927-42.

PMID: 4000932 PMC: 341043. DOI: 10.1093/nar/13.3.927.


References
1.
Dorman D, Roberts J . Nuclear magnetic resonance spectroscopy: 13C spectra of some common nucleotides. Proc Natl Acad Sci U S A. 1970; 65(1):19-26. PMC: 286184. DOI: 10.1073/pnas.65.1.19. View

2.
Mantsch H, Smith I . Fourier-transformed 13 C NMR spectra of polyuridylic acid, uridine, and related nucleotides--the use of 31 POC 13 C couplings for conformational analysis. Biochem Biophys Res Commun. 1972; 46(2):808-15. DOI: 10.1016/s0006-291x(72)80213-4. View

3.
Altona C, Sundaralingam M . Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J Am Chem Soc. 1972; 94(23):8205-12. DOI: 10.1021/ja00778a043. View

4.
Lapper R, Smith I . A 13 C and 1 H nuclear magnetic resonance study of the conformations of 2',3'-cyclic nucleotides. J Am Chem Soc. 1973; 95(9):2878-80. DOI: 10.1021/ja00790a024. View

5.
Altona C, Sundaralingam M . Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. J Am Chem Soc. 1973; 95(7):2333-44. DOI: 10.1021/ja00788a038. View