» Articles » PMID: 40060443

A Variational Deep-learning Approach to Modeling Memory T Cell Dynamics

Overview
Journal bioRxiv
Date 2025 Mar 10
PMID 40060443
Authors
Affiliations
Soon will be listed here.
Abstract

Mechanistic models of dynamic, interacting cell populations have yielded many insights into the growth and resolution of immune responses. Historically these models have described the behavior of pre-defined cell types based on small numbers of phenotypic markers. The ubiquity of deep phenotyping therefore presents a new challenge; how do we confront tractable and interpretable mathematical models with high-dimensional data? To tackle this problem, we studied the development and persistence of lung-resident memory CD4 and CD8 T cells (T) in mice infected with influenza virus. We developed an approach in which dynamical model parameters and the population structure are inferred simultaneously. This method uses deep learning and stochastic variational inference and is trained on the single-cell flow-cytometry data directly, rather than on the kinetics of pre-identified clusters. We show that during the resolution phase of the immune response, memory CD4 and CD8 T cells within the lung are phenotypically diverse, with subsets exhibiting highly distinct and time-dependent dynamics. T heterogeneity is maintained long-term by ongoing differentiation of relatively persistent Bcl-2 CD4 and CD8 T subsets which resolve into distinct functional populations. Our approach yields new insights into the dynamics of tissue-localized immune memory, and is a novel basis for interpreting time series of high-dimensional data, broadly applicable to diverse biological systems.

References
1.
Wu T, Hu Y, Lee Y, Bouchard K, Benechet A, Khanna K . Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol. 2013; 95(2):215-24. PMC: 3896663. DOI: 10.1189/jlb.0313180. View

2.
Bachireddy P, Azizi E, Burdziak C, Nguyen V, Ennis C, Maurer K . Mapping the evolution of T cell states during response and resistance to adoptive cellular therapy. Cell Rep. 2021; 37(6):109992. PMC: 9035342. DOI: 10.1016/j.celrep.2021.109992. View

3.
Costa Del Amo P, Lahoz-Beneytez J, Boelen L, Ahmed R, Miners K, Zhang Y . Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness. PLoS Biol. 2018; 16(6):e2005523. PMC: 6033534. DOI: 10.1371/journal.pbio.2005523. View

4.
Fiege J, Stone I, Fay E, Markman M, Wijeyesinghe S, Macchietto M . The Impact of TCR Signal Strength on Resident Memory T Cell Formation during Influenza Virus Infection. J Immunol. 2019; 203(4):936-945. PMC: 6684852. DOI: 10.4049/jimmunol.1900093. View

5.
Wolf F, Angerer P, Theis F . SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1):15. PMC: 5802054. DOI: 10.1186/s13059-017-1382-0. View