6.
Verma G, Chashoo G, Ali A, Khan M, Akhtar W, Ali I
. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg Chem. 2018; 77:106-124.
DOI: 10.1016/j.bioorg.2018.01.007.
View
7.
Janke C, Magiera M
. The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol. 2020; 21(6):307-326.
DOI: 10.1038/s41580-020-0214-3.
View
8.
Allen L, Raclea R, Natho P, Parsons P
. Recent advances in the synthesis of α-amino ketones. Org Biomol Chem. 2020; 19(3):498-513.
DOI: 10.1039/d0ob02098b.
View
9.
Mohamed A, Abou-Ghadir O, Mostafa Y, Dahlous K, Brase S, Youssif B
. Design and synthesis of new 1,2,4-oxadiazole/quinazoline-4-one hybrids with antiproliferative activity as multitargeted inhibitors. Front Chem. 2024; 12:1447618.
PMC: 11393688.
DOI: 10.3389/fchem.2024.1447618.
View
10.
Abdelbaset M, Abuo-Rahma G, Abdelrahman M, Ramadan M, Youssif B, Bukhari S
. Novel pyrrol-2(3H)-ones and pyridazin-3(2H)-ones carrying quinoline scaffold as anti-proliferative tubulin polymerization inhibitors. Bioorg Chem. 2018; 80:151-163.
DOI: 10.1016/j.bioorg.2018.06.003.
View
11.
Darzynkiewicz Z, Bedner E, Smolewski P
. Flow cytometry in analysis of cell cycle and apoptosis. Semin Hematol. 2001; 38(2):179-93.
DOI: 10.1016/s0037-1963(01)90051-4.
View
12.
Hsieh H, Liou J, Mahindroo N
. Pharmaceutical design of antimitotic agents based on combretastatins. Curr Pharm Des. 2005; 11(13):1655-77.
DOI: 10.2174/1381612053764751.
View
13.
Mustafa M, Abdelhamid D, Abdelhafez E, Ibrahim M, Gamal-Eldeen A, Aly O
. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur J Med Chem. 2017; 141:293-305.
DOI: 10.1016/j.ejmech.2017.09.063.
View
14.
Dhuguru J, Zviagin E, Skouta R
. FDA-Approved Oximes and Their Significance in Medicinal Chemistry. Pharmaceuticals (Basel). 2022; 15(1).
PMC: 8779982.
DOI: 10.3390/ph15010066.
View
15.
Al-Wahaibi L, Mohammed A, Abdel Rahman F, Abdelrahman M, Gu X, Trembleau L
. Design, synthesis, apoptotic, and antiproliferative effects of 5-chloro-3- (2-methoxyvinyl)-indole-2-carboxamides and pyrido[3,4-b]indol-1-ones as potent EGFREGFR inhibitors. J Enzyme Inhib Med Chem. 2023; 38(1):2218602.
PMC: 10234138.
DOI: 10.1080/14756366.2023.2218602.
View
16.
Mekheimer R, Allam S, Al-Sheikh M, Moustafa M, Al-Mousawi S, Mostafa Y
. Discovery of new pyrimido[5,4-c]quinolines as potential antiproliferative agents with multitarget actions: Rapid synthesis, docking, and ADME studies. Bioorg Chem. 2022; 121:105693.
DOI: 10.1016/j.bioorg.2022.105693.
View
17.
Mohassab A, Hassan H, Abdelhamid D, Abdel-Aziz M, Dalby K, Kaoud T
. Novel quinoline incorporating 1,2,4-triazole/oxime hybrids: Synthesis, molecular docking, anti-inflammatory, COX inhibition, ulceroginicity and histopathological investigations. Bioorg Chem. 2017; 75:242-259.
DOI: 10.1016/j.bioorg.2017.09.018.
View
18.
Ward R, Fawell S, Floch N, Flemington V, McKerrecher D, Smith P
. Challenges and Opportunities in Cancer Drug Resistance. Chem Rev. 2020; 121(6):3297-3351.
DOI: 10.1021/acs.chemrev.0c00383.
View
19.
Geurs S, Clarisse D, De Bosscher K, Dhooghe M
. The Zinc-Binding Group Effect: Lessons from Non-Hydroxamic Acid Vorinostat Analogs. J Med Chem. 2023; 66(12):7698-7729.
DOI: 10.1021/acs.jmedchem.3c00226.
View
20.
Alvarez C, Alvarez R, Corchete P, Lopez J, Perez-Melero C, Pelaez R
. Diarylmethyloxime and hydrazone derivatives with 5-indolyl moieties as potent inhibitors of tubulin polymerization. Bioorg Med Chem. 2008; 16(11):5952-61.
DOI: 10.1016/j.bmc.2008.04.054.
View