6.
Diercke K, Kohl A, Lux C, Erber R
. IL-1β and compressive forces lead to a significant induction of RANKL-expression in primary human cementoblasts. J Orofac Orthop. 2012; 73(5):397-412.
DOI: 10.1007/s00056-012-0095-y.
View
7.
Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A
. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 2013; 25(10):1939-48.
DOI: 10.1016/j.cellsig.2013.06.007.
View
8.
Lavoie H, Gagnon J, Therrien M
. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 2020; 21(10):607-632.
DOI: 10.1038/s41580-020-0255-7.
View
9.
Grzeczka A, Kordowitzki P
. Resveratrol and SIRT1: Antiaging Cornerstones for Oocytes?. Nutrients. 2022; 14(23).
PMC: 9736670.
DOI: 10.3390/nu14235101.
View
10.
Saito M, Onuma K, Yamakoshi Y
. Cementum is key to periodontal tissue regeneration: A review on apatite microstructures for creation of novel cementum-based dental implants. Genesis. 2023; 61(3-4):e23514.
DOI: 10.1002/dvg.23514.
View
11.
Wang H, Li T, Jiang Y, Chen S, Zou S, Bonewald L
. Force-Loaded Cementocytes Regulate Osteoclastogenesis via S1P/S1PR1/Rac1 Axis. J Dent Res. 2023; 102(12):1376-1386.
DOI: 10.1177/00220345231195765.
View
12.
Kanzaki H, Chiba M, Shimizu Y, Mitani H
. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res. 2002; 17(2):210-20.
DOI: 10.1359/jbmr.2002.17.2.210.
View
13.
Niederau C, Bhargava S, Schneider-Kramman R, Jankowski J, Craveiro R, Wolf M
. Xanthohumol exerts anti-inflammatory effects in an in vitro model of mechanically stimulated cementoblasts. Sci Rep. 2022; 12(1):14970.
PMC: 9440237.
DOI: 10.1038/s41598-022-19220-6.
View
14.
Ye Y, Fang L, Li J, Wu H, Tan X, Luo H
. Chemerin/ChemR23 regulates cementoblast function and tooth resorption in mice via inflammatory factors. J Periodontol. 2020; 92(10):1470-1482.
DOI: 10.1002/JPER.20-0675.
View
15.
Kapetanovic I, Muzzio M, Huang Z, Thompson T, McCormick D
. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol. 2010; 68(3):593-601.
PMC: 3090701.
DOI: 10.1007/s00280-010-1525-4.
View
16.
Ma Y, Qian Y, Chen Y, Ruan X, Peng X, Sun Y
. Resveratrol modulates the inflammatory response in hPDLSCs via the NRF2/HO-1 and NF-κB pathways and promotes osteogenic differentiation. J Periodontal Res. 2023; 59(1):162-173.
DOI: 10.1111/jre.13200.
View
17.
Krishnan V, Davidovitch Z
. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res. 2009; 88(7):597-608.
DOI: 10.1177/0022034509338914.
View
18.
Rizk M, Niederau C, Florea A, Kiessling F, Morgenroth A, Mottaghy F
. Periodontal ligament and alveolar bone remodeling during long orthodontic tooth movement analyzed by a novel user-independent 3D-methodology. Sci Rep. 2023; 13(1):19919.
PMC: 10646115.
DOI: 10.1038/s41598-023-47386-0.
View
19.
Shahidi M, Vaziri F, Haerian A, Farzanegan A, Jafari S, Sharifi R
. Proliferative and Anti-Inflammatory Effects of Resveratrol and Silymarin on Human Gingival Fibroblasts: A View to the Future. J Dent (Tehran). 2017; 14(4):203-211.
PMC: 5745224.
View
20.
Talic N
. Adverse effects of orthodontic treatment: A clinical perspective. Saudi Dent J. 2013; 23(2):55-9.
PMC: 3770235.
DOI: 10.1016/j.sdentj.2011.01.003.
View