6.
Dufayet L, Bargel S, Bonnet A, Boukerma A, Chevallier C, Evrard M
. Gamma-hydroxybutyrate (GHB), 1,4-butanediol (1,4BD), and gamma-butyrolactone (GBL) intoxication: A state-of-the-art review. Regul Toxicol Pharmacol. 2023; 142:105435.
DOI: 10.1016/j.yrtph.2023.105435.
View
7.
Xu W, Chao R, Xie X, Mao Y, Chen X, Chen X
. IL13Rα2 as a crucial receptor for Chi3l1 in osteoclast differentiation and bone resorption through the MAPK/AKT pathway. Cell Commun Signal. 2024; 22(1):81.
PMC: 10826115.
DOI: 10.1186/s12964-023-01423-7.
View
8.
Jing Z, Liu W, Xue C, Wu S, Chen W, Lin X
. AKT activator SC79 protects hepatocytes from TNF-α-mediated apoptosis and alleviates d-Gal/LPS-induced liver injury. Am J Physiol Gastrointest Liver Physiol. 2019; 316(3):G387-G396.
DOI: 10.1152/ajpgi.00350.2018.
View
9.
Edilova M, Abdul-Sater A, Watts T
. TRAF1 Signaling in Human Health and Disease. Front Immunol. 2019; 9:2969.
PMC: 6305416.
DOI: 10.3389/fimmu.2018.02969.
View
10.
Dong Y, Kang H, Peng R, Liu Z, Liao F, Hu S
. A clinical-stage Nrf2 activator suppresses osteoclast differentiation via the iron-ornithine axis. Cell Metab. 2024; 36(8):1679-1695.e6.
DOI: 10.1016/j.cmet.2024.03.005.
View
11.
An Y, Zhang H, Wang C, Jiao F, Xu H, Wang X
. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J. 2019; 33(11):12515-12527.
PMC: 6902677.
DOI: 10.1096/fj.201802805RR.
View
12.
Sies H, Jones D
. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020; 21(7):363-383.
DOI: 10.1038/s41580-020-0230-3.
View
13.
Takegahara N, Kim H, Choi Y
. Unraveling the intricacies of osteoclast differentiation and maturation: insight into novel therapeutic strategies for bone-destructive diseases. Exp Mol Med. 2024; 56(2):264-272.
PMC: 10907717.
DOI: 10.1038/s12276-024-01157-7.
View
14.
Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H
. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell. 2010; 38(1):101-13.
PMC: 2855162.
DOI: 10.1016/j.molcel.2010.03.009.
View
15.
McDonald M, Khoo W, Ng P, Xiao Y, Zamerli J, Thatcher P
. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021; 184(5):1330-1347.e13.
PMC: 7938889.
DOI: 10.1016/j.cell.2021.02.002.
View
16.
Nishioku T, Anzai R, Hiramatsu S, Terazono A, Nakao M, Moriyama M
. Lactate dehydrogenase A inhibition prevents RANKL-induced osteoclastogenesis by reducing enhanced glycolysis. J Pharmacol Sci. 2023; 153(4):197-207.
DOI: 10.1016/j.jphs.2023.09.005.
View
17.
Bonnet N, Brun J, Rousseau J, Duong L, Ferrari S
. Cathepsin K Controls Cortical Bone Formation by Degrading Periostin. J Bone Miner Res. 2017; 32(7):1432-1441.
DOI: 10.1002/jbmr.3136.
View
18.
Tiedemann K, Le Nihouannen D, Fong J, Hussein O, Barralet J, Komarova S
. Regulation of Osteoclast Growth and Fusion by mTOR/raptor and mTOR/rictor/Akt. Front Cell Dev Biol. 2017; 5:54.
PMC: 5435769.
DOI: 10.3389/fcell.2017.00054.
View
19.
Nie C, Hu J, Wang B, Li H, Yang X, Hong F
. Effects of Co-exposure to Fluoride and Arsenic on TRAF-6 Signaling and NF-κB Pathway of Bone Metabolism. Biol Trace Elem Res. 2022; 201(9):4447-4455.
DOI: 10.1007/s12011-022-03508-9.
View
20.
Yang T, Shen H, Liu A, Dong S, Zhang L, Deng F
. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol. 2019; 16(2):91-103.
PMC: 6980376.
DOI: 10.1038/s41574-019-0282-7.
View