Activation of ROS/MAPKs/NF-κB/NLRP3 and Inhibition of Efferocytosis in Osteoclast-mediated Diabetic Osteoporosis
Overview
Authors
Affiliations
Diabetes mellitus (DM) affects bone metabolism and leads to osteoporosis; however, its pathogenetic mechanisms remain unknown. We found that high glucose (HG) conditions induced the production of reactive oxygen species (ROS) and the expression of proteins related to MAPKs [phosphorylated (p)-ERK, p-JNK, and p-p38], NF-κB (NF-κB, p-IκB, and IKK), and NACHT-LRR-PYD domains-containing protein 3 (NALP3) (NLRP3) [apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), caspase-1, IL-18, IL-1β, and NLRP3] in osteoclasts (OCs) . Further analysis showed that in HG-induced OCs, ROS is an upstream signal for MAPKs, NF-κB, and the NLRP3 inflammasome. Moreover, MAPKs mediated the activation of NF-κB and NLRP3, whereas NF-κB up-regulated the NLRP3 inflammasome response. Interestingly, HG inducement enhanced the bone resorption of OCs but inhibited their efferocytosis, whereas insulin and lipoxin A4 (4) treatment reversed this phenomenon. In streptozotocin-induced diabetic rats , the numbers and the bone-resorption capacity of OCs as well as the serum levels of TRACP-5b were significantly increased, and the expression of MAPK-, NF-κB-, and NLRP3 inflammasome-related proteins in the proximal tibia were also significantly elevated; however, treatment with insulin and LXA4 reversed this elevation. Together, these results demonstrated that the activation of ROS/MAPKs/NF-κB/NLRP3 and the inhibition of efferocytosis in OCs are the main causes of osteoporosis in DM.-An, Y., Zhang, H., Wang, C., Jiao, F., Xu, H., Wang, X., Luan, W., Ma, F., Ni, L., Tang, X., Liu, M., Guo, W., Yu, L. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis.
Sil R, Chakraborti A Front Chem. 2025; 13:1543455.
PMID: 40070406 PMC: 11893434. DOI: 10.3389/fchem.2025.1543455.
Tang K, Deng W, Huang Z, Chen S, Zhu Z, Lin S Front Pharmacol. 2025; 16:1466057.
PMID: 40008134 PMC: 11851123. DOI: 10.3389/fphar.2025.1466057.
Zhang X, Zhu H, Zhang J Antioxidants (Basel). 2025; 14(2).
PMID: 40002415 PMC: 11852023. DOI: 10.3390/antiox14020231.
Rong B, Jiang H, Zhu W, Yang G, Zhou X, Lyu Z Medicine (Baltimore). 2025; 104(8):e41613.
PMID: 39993124 PMC: 11856964. DOI: 10.1097/MD.0000000000041613.
Programmed Cell Death in Rheumatoid Arthritis.
Tong L, Qiu J, Xu Y, Lian S, Xu Y, Wu X J Inflamm Res. 2025; 18:2377-2393.
PMID: 39991656 PMC: 11846511. DOI: 10.2147/JIR.S499345.