6.
Shen Z, Ratia K, Cooper L, Kong D, Lee H, Kwon Y
. Design of SARS-CoV-2 PLpro Inhibitors for COVID-19 Antiviral Therapy Leveraging Binding Cooperativity. J Med Chem. 2021; 65(4):2940-2955.
PMC: 8547495.
DOI: 10.1021/acs.jmedchem.1c01307.
View
7.
Artika I, Dewantari A, Wiyatno A
. Molecular biology of coronaviruses: current knowledge. Heliyon. 2020; 6(8):e04743.
PMC: 7430346.
DOI: 10.1016/j.heliyon.2020.e04743.
View
8.
Cho C, Li S, Lalonde T, Yang K, Yu G, Qiao Y
. Drug Repurposing for the SARS-CoV-2 Papain-Like Protease. ChemMedChem. 2021; 17(1):e202100455.
PMC: 8653067.
DOI: 10.1002/cmdc.202100455.
View
9.
Angulo J, Nieto P
. STD-NMR: application to transient interactions between biomolecules-a quantitative approach. Eur Biophys J. 2011; 40(12):1357-69.
DOI: 10.1007/s00249-011-0749-5.
View
10.
Tan H, Hu Y, Jadhav P, Tan B, Wang J
. Progress and Challenges in Targeting the SARS-CoV-2 Papain-like Protease. J Med Chem. 2022; 65(11):7561-7580.
PMC: 9159073.
DOI: 10.1021/acs.jmedchem.2c00303.
View
11.
Amstutz A, Speich B, Mentre F, Rueegg C, Belhadi D, Assoumou L
. Effects of remdesivir in patients hospitalised with COVID-19: a systematic review and individual patient data meta-analysis of randomised controlled trials. Lancet Respir Med. 2023; 11(5):453-464.
PMC: 10156140.
DOI: 10.1016/S2213-2600(22)00528-8.
View
12.
Proj M, Knez D, Sosic I, Gobec S
. Redox active or thiol reactive? Optimization of rapid screens to identify less evident nuisance compounds. Drug Discov Today. 2022; 27(6):1733-1742.
DOI: 10.1016/j.drudis.2022.03.008.
View
13.
Napolitano V, Dabrowska A, Schorpp K, Mourao A, Barreto-Duran E, Benedyk M
. Acriflavine, a clinically approved drug, inhibits SARS-CoV-2 and other betacoronaviruses. Cell Chem Biol. 2022; 29(5):774-784.e8.
PMC: 8751734.
DOI: 10.1016/j.chembiol.2021.11.006.
View
14.
Arya R, Prashar V, Kumar M
. Evaluating Stability and Activity of SARS-CoV-2 PLpro for High-throughput Screening of Inhibitors. Mol Biotechnol. 2021; 64(1):1-8.
PMC: 8380414.
DOI: 10.1007/s12033-021-00383-y.
View
15.
Garnsey M, Robinson M, Nguyen L, Cardin R, Tillotson J, Mashalidis E
. Discovery of SARS-CoV-2 papain-like protease (PL) inhibitors with efficacy in a murine infection model. Sci Adv. 2024; 10(35):eado4288.
PMC: 11364104.
DOI: 10.1126/sciadv.ado4288.
View
16.
Santos L, Kronenberger T, Almeida R, Silva E, Rocha R, Oliveira J
. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease M and Papain-like Protease PL of SARS-CoV-2. J Chem Inf Model. 2022; 62(24):6553-6573.
DOI: 10.1021/acs.jcim.2c00693.
View
17.
Ma C, Sacco M, Hurst B, Townsend J, Hu Y, Szeto T
. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020; 30(8):678-692.
PMC: 7294525.
DOI: 10.1038/s41422-020-0356-z.
View
18.
Kuzikov M, Costanzi E, Reinshagen J, Esposito F, Vangeel L, Wolf M
. Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. ACS Pharmacol Transl Sci. 2022; 4(3):1096-1110.
PMC: 7986981.
DOI: 10.1021/acsptsci.0c00216.
View
19.
Jones G, Willett P, Glen R, Leach A, Taylor R
. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997; 267(3):727-48.
DOI: 10.1006/jmbi.1996.0897.
View
20.
Ton A, Pandey M, Smith J, Ban F, Fernandez M, Cherkasov A
. Targeting SARS-CoV-2 papain-like protease in the postvaccine era. Trends Pharmacol Sci. 2022; 43(11):906-919.
PMC: 9399131.
DOI: 10.1016/j.tips.2022.08.008.
View