6.
Asnicar F, Thomas A, Passerini A, Waldron L, Segata N
. Machine learning for microbiologists. Nat Rev Microbiol. 2023; 22(4):191-205.
DOI: 10.1038/s41579-023-00984-1.
View
7.
Ventola C
. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015; 40(4):277-83.
PMC: 4378521.
View
8.
Ren Y, Chakraborty T, Doijad S, Falgenhauer L, Falgenhauer J, Goesmann A
. Prediction of antimicrobial resistance based on whole-genome sequencing and machine learning. Bioinformatics. 2021; 38(2):325-334.
PMC: 8722762.
DOI: 10.1093/bioinformatics/btab681.
View
9.
Carrico J, Rossi M, Moran-Gilad J, Van Domselaar G, Ramirez M
. A primer on microbial bioinformatics for nonbioinformaticians. Clin Microbiol Infect. 2018; 24(4):342-349.
DOI: 10.1016/j.cmi.2017.12.015.
View
10.
Malik A, Patel P, Ehsan L, Guleria S, Hartka T, Adewole S
. Ten simple rules for engaging with artificial intelligence in biomedicine. PLoS Comput Biol. 2021; 17(2):e1008531.
PMC: 7877652.
DOI: 10.1371/journal.pcbi.1008531.
View
11.
Nsubuga M, Galiwango R, Jjingo D, Mboowa G
. Generalizability of machine learning in predicting antimicrobial resistance in E. coli: a multi-country case study in Africa. BMC Genomics. 2024; 25(1):287.
PMC: 10946178.
DOI: 10.1186/s12864-024-10214-4.
View
12.
Ali T, Ahmed S, Aslam M
. Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation. Antibiotics (Basel). 2023; 12(3).
PMC: 10044311.
DOI: 10.3390/antibiotics12030523.
View
13.
Wong F, de la Fuente-Nunez C, Collins J
. Leveraging artificial intelligence in the fight against infectious diseases. Science. 2023; 381(6654):164-170.
PMC: 10663167.
DOI: 10.1126/science.adh1114.
View
14.
Kim J, Maguire F, Tsang K, Gouliouris T, Peacock S, McAllister T
. Machine Learning for Antimicrobial Resistance Prediction: Current Practice, Limitations, and Clinical Perspective. Clin Microbiol Rev. 2022; 35(3):e0017921.
PMC: 9491192.
DOI: 10.1128/cmr.00179-21.
View
15.
Busnatu S, Niculescu A, Bolocan A, Petrescu G, Paduraru D, Nastasa I
. Clinical Applications of Artificial Intelligence-An Updated Overview. J Clin Med. 2022; 11(8).
PMC: 9031863.
DOI: 10.3390/jcm11082265.
View
16.
Khaledi A, Weimann A, Schniederjans M, Asgari E, Kuo T, Oliver A
. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol Med. 2020; 12(3):e10264.
PMC: 7059009.
DOI: 10.15252/emmm.201910264.
View
17.
Simoni S, Mingoia M, Brenciani A, Carelli M, Lleo M, Malerba G
. First IncHI2 Plasmid Carrying , , and Double Copies of in a Multidrug-Resistant Escherichia coli Human Isolate. mSphere. 2021; 6(3):e0030221.
PMC: 8265643.
DOI: 10.1128/mSphere.00302-21.
View
18.
Moradigaravand D, Palm M, Farewell A, Mustonen V, Warringer J, Parts L
. Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS Comput Biol. 2018; 14(12):e1006258.
PMC: 6310291.
DOI: 10.1371/journal.pcbi.1006258.
View
19.
Hu K, Meyer F, Deng Z, Asgari E, Kuo T, Munch P
. Assessing computational predictions of antimicrobial resistance phenotypes from microbial genomes. Brief Bioinform. 2024; 25(3).
PMC: 11070729.
DOI: 10.1093/bib/bbae206.
View
20.
Habehh H, Gohel S
. Machine Learning in Healthcare. Curr Genomics. 2022; 22(4):291-300.
PMC: 8822225.
DOI: 10.2174/1389202922666210705124359.
View