6.
Sanz-Ortega L, Rojas J, Portilla Y, Perez-Yague S, Barber D
. Magnetic Nanoparticles Attached to the NK Cell Surface for Tumor Targeting in Adoptive Transfer Therapies Does Not Affect Cellular Effector Functions. Front Immunol. 2019; 10:2073.
PMC: 6728794.
DOI: 10.3389/fimmu.2019.02073.
View
7.
Liu Y, Fang Y, Chen X, Wang Z, Liang X, Zhang T
. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol. 2020; 5(43).
DOI: 10.1126/sciimmunol.aax7969.
View
8.
Behm F, Smith F, Raimondi S, Pui C, Bernstein I
. Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. Blood. 1996; 87(3):1134-9.
View
9.
Waiczies S, Niendorf T, Lombardi G
. Labeling of cell therapies: How can we get it right?. Oncoimmunology. 2017; 6(10):e1345403.
PMC: 5665073.
DOI: 10.1080/2162402X.2017.1345403.
View
10.
Curran K, Pegram H, Brentjens R
. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med. 2012; 14(6):405-15.
PMC: 4697438.
DOI: 10.1002/jgm.2604.
View
11.
Godal A, Bruland O, Haug E, Aas M, Fodstad O
. Unexpected expression of the 250 kD melanoma-associated antigen in human sarcoma cells. Br J Cancer. 1986; 53(6):839-41.
PMC: 2001416.
DOI: 10.1038/bjc.1986.142.
View
12.
Charpentier J, King P
. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal. 2021; 19(1):92.
PMC: 8427877.
DOI: 10.1186/s12964-021-00766-3.
View
13.
McMahon H, Boucrot E
. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011; 12(8):517-33.
DOI: 10.1038/nrm3151.
View
14.
Ferrone S, Chen Z, Liu C, Hirai S, Kageshita T, Mittelman A
. Human high molecular weight-melanoma associated antigen mimicry by mouse anti-idiotypic monoclonal antibodies MK2-23. Experimental studies and clinical trials in patients with malignant melanoma. Pharmacol Ther. 1993; 57(2-3):259-90.
DOI: 10.1016/0163-7258(93)90058-l.
View
15.
Unterweger H, Janko C, Schwarz M, Dezsi L, Urbanics R, Matuszak J
. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging. Int J Nanomedicine. 2017; 12:5223-5238.
PMC: 5533574.
DOI: 10.2147/IJN.S138108.
View
16.
Bray F, Laversanne M, Sung H, Ferlay J, Siegel R, Soerjomataram I
. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3):229-263.
DOI: 10.3322/caac.21834.
View
17.
Nie W, Wei W, Zuo L, Lv C, Zhang F, Lu G
. Magnetic Nanoclusters Armed with Responsive PD-1 Antibody Synergistically Improved Adoptive T-Cell Therapy for Solid Tumors. ACS Nano. 2019; 13(2):1469-1478.
DOI: 10.1021/acsnano.8b07141.
View
18.
Sterner R, Sterner R
. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021; 11(4):69.
PMC: 8024391.
DOI: 10.1038/s41408-021-00459-7.
View
19.
Ho J, Wang L, Liu Y, Ba M, Yang J, Zhang X
. Promoter usage regulating the surface density of CAR molecules may modulate the kinetics of CAR-T cells . Mol Ther Methods Clin Dev. 2021; 21:237-246.
PMC: 8027690.
DOI: 10.1016/j.omtm.2021.03.007.
View
20.
Muhlberger M, Janko C, Unterweger H, Friedrich R, Friedrich B, Band J
. Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy. Int J Nanomedicine. 2019; 14:8421-8432.
PMC: 6817714.
DOI: 10.2147/IJN.S218488.
View