» Articles » PMID: 33824268

CAR-T Cell Therapy: Current Limitations and Potential Strategies

Overview
Journal Blood Cancer J
Date 2021 Apr 7
PMID 33824268
Citations 873
Authors
Affiliations
Soon will be listed here.
Abstract

Chimeric antigen receptor (CAR)-T cell therapy is a revolutionary new pillar in cancer treatment. Although treatment with CAR-T cells has produced remarkable clinical responses with certain subsets of B cell leukemia or lymphoma, many challenges limit the therapeutic efficacy of CAR-T cells in solid tumors and hematological malignancies. Barriers to effective CAR-T cell therapy include severe life-threatening toxicities, modest anti-tumor activity, antigen escape, restricted trafficking, and limited tumor infiltration. In addition, the host and tumor microenvironment interactions with CAR-T cells critically alter CAR-T cell function. Furthermore, a complex workforce is required to develop and implement these treatments. In order to overcome these significant challenges, innovative strategies and approaches to engineer more powerful CAR-T cells with improved anti-tumor activity and decreased toxicity are necessary. In this review, we discuss recent innovations in CAR-T cell engineering to improve clinical efficacy in both hematological malignancy and solid tumors and strategies to overcome limitations of CAR-T cell therapy in both hematological malignancy and solid tumors.

Citing Articles

Targeting HER2-Positive Solid Tumors with CAR NK Cells: CD44 Expression Is a Critical Modulator of HER2-Specific CAR NK Cell Efficacy.

Gergely B, Vereb M, Rebenku I, Vereb G, Szoor A Cancers (Basel). 2025; 17(5).

PMID: 40075578 PMC: 11898473. DOI: 10.3390/cancers17050731.


Engineered circular RNA-based DLL3-targeted CAR-T therapy for small cell lung cancer.

Cai J, Liu Z, Chen S, Zhang J, Li H, Wang X Exp Hematol Oncol. 2025; 14(1):35.

PMID: 40075480 PMC: 11905684. DOI: 10.1186/s40164-025-00625-8.


Strategies to Overcome Antigen Heterogeneity in CAR-T Cell Therapy.

Zhang B, Wu J, Jiang H, Zhou M Cells. 2025; 14(5).

PMID: 40072049 PMC: 11899321. DOI: 10.3390/cells14050320.


Nanobody-enhanced chimeric antigen receptor T-cell therapy: overcoming barriers in solid tumors with VHH and VNAR-based constructs.

Guo S, Xi X Biomark Res. 2025; 13(1):41.

PMID: 40069884 PMC: 11899093. DOI: 10.1186/s40364-025-00755-5.


Adipose stromal cells increase insulin sensitivity and decrease liver gluconeogenesis in a mouse model of type 1 diabetes mellitus.

Lai H, Lee Y, Chen P, Tang C, Chen L Stem Cell Res Ther. 2025; 16(1):133.

PMID: 40069851 PMC: 11899698. DOI: 10.1186/s13287-025-04225-5.


References
1.
June C, OConnor R, Kawalekar O, Ghassemi S, Milone M . CAR T cell immunotherapy for human cancer. Science. 2018; 359(6382):1361-1365. DOI: 10.1126/science.aar6711. View

2.
Sadelain M, Brentjens R, Riviere I . The basic principles of chimeric antigen receptor design. Cancer Discov. 2013; 3(4):388-98. PMC: 3667586. DOI: 10.1158/2159-8290.CD-12-0548. View

3.
Neelapu S, Locke F, Bartlett N, Lekakis L, Miklos D, Jacobson C . Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J Med. 2017; 377(26):2531-2544. PMC: 5882485. DOI: 10.1056/NEJMoa1707447. View

4.
Maude S, Laetsch T, Buechner J, Rives S, Boyer M, Bittencourt H . Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018; 378(5):439-448. PMC: 5996391. DOI: 10.1056/NEJMoa1709866. View

5.
Schuster S, Svoboda J, Chong E, Nasta S, Mato A, Anak O . Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. N Engl J Med. 2017; 377(26):2545-2554. PMC: 5788566. DOI: 10.1056/NEJMoa1708566. View