6.
Sofer T, Kurniansyah N, Murray M, Ho Y, Abner E, Esko T
. Genome-wide association study of obstructive sleep apnoea in the Million Veteran Program uncovers genetic heterogeneity by sex. EBioMedicine. 2023; 90:104536.
PMC: 10065974.
DOI: 10.1016/j.ebiom.2023.104536.
View
7.
Wang Y, Tsuo K, Kanai M, Neale B, Martin A
. Challenges and Opportunities for Developing More Generalizable Polygenic Risk Scores. Annu Rev Biomed Data Sci. 2022; 5:293-320.
PMC: 9828290.
DOI: 10.1146/annurev-biodatasci-111721-074830.
View
8.
Gogarten S, Sofer T, Chen H, Yu C, Brody J, Thornton T
. Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics. 2019; 35(24):5346-5348.
PMC: 7904076.
DOI: 10.1093/bioinformatics/btz567.
View
9.
Stilp A, Emery L, Broome J, Buth E, Khan A, Laurie C
. A System for Phenotype Harmonization in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine (TOPMed) Program. Am J Epidemiol. 2021; 190(10):1977-1992.
PMC: 8485147.
DOI: 10.1093/aje/kwab115.
View
10.
Taliun D, Harris D, Kessler M, Carlson J, Szpiech Z, Torres R
. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021; 590(7845):290-299.
PMC: 7875770.
DOI: 10.1038/s41586-021-03205-y.
View
11.
Uren C, Hoal E, Moller M
. Putting RFMix and ADMIXTURE to the test in a complex admixed population. BMC Genet. 2020; 21(1):40.
PMC: 7140372.
DOI: 10.1186/s12863-020-00845-3.
View
12.
Maples B, Gravel S, Kenny E, Bustamante C
. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am J Hum Genet. 2013; 93(2):278-88.
PMC: 3738819.
DOI: 10.1016/j.ajhg.2013.06.020.
View
13.
Ruan Y, Lin Y, Feng Y, Chen C, Lam M, Guo Z
. Improving polygenic prediction in ancestrally diverse populations. Nat Genet. 2022; 54(5):573-580.
PMC: 9117455.
DOI: 10.1038/s41588-022-01054-7.
View
14.
Seyerle A, Laurie C, Coombes B, Jain D, Conomos M, Brody J
. Whole Genome Analysis of Venous Thromboembolism: the Trans-Omics for Precision Medicine Program. Circ Genom Precis Med. 2023; 16(2):e003532.
PMC: 10151032.
DOI: 10.1161/CIRCGEN.121.003532.
View
15.
Ge T, Irvin M, Patki A, Srinivasasainagendra V, Lin Y, Tiwari H
. Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations. Genome Med. 2022; 14(1):70.
PMC: 9241245.
DOI: 10.1186/s13073-022-01074-2.
View
16.
Schubert R, Andaleon A, Wheeler H
. Comparing local ancestry inference models in populations of two- and three-way admixture. PeerJ. 2020; 8:e10090.
PMC: 7537619.
DOI: 10.7717/peerj.10090.
View
17.
Elhaik E
. Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Sci Rep. 2022; 12(1):14683.
PMC: 9424212.
DOI: 10.1038/s41598-022-14395-4.
View
18.
Naret O, Kutalik Z, Hodel F, Xu Z, Marques-Vidal P, Fellay J
. Improving polygenic prediction with genetically inferred ancestry. HGG Adv. 2022; 3(3):100109.
PMC: 9095896.
DOI: 10.1016/j.xhgg.2022.100109.
View
19.
Giri A, Hellwege J, Keaton J, Park J, Qiu C, Warren H
. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet. 2018; 51(1):51-62.
PMC: 6365102.
DOI: 10.1038/s41588-018-0303-9.
View
20.
Choi S, OReilly P
. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience. 2019; 8(7).
PMC: 6629542.
DOI: 10.1093/gigascience/giz082.
View