6.
Chen T, Zhao M, Tang X, Wang W, Zhang M, Tang J
. Serious Risk of Tigecycline Resistance in Escherichia coli Isolated from Swine Manure. Microb Ecol. 2022; 86(2):947-958.
DOI: 10.1007/s00248-022-02133-2.
View
7.
Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J
. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Mol Plant. 2023; 16(11):1733-1742.
DOI: 10.1016/j.molp.2023.09.010.
View
8.
Sun Y, Cai Y, Liu X, Bai N, Liang B, Wang R
. The emergence of clinical resistance to tigecycline. Int J Antimicrob Agents. 2012; 41(2):110-6.
DOI: 10.1016/j.ijantimicag.2012.09.005.
View
9.
Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov A
. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19(5):455-77.
PMC: 3342519.
DOI: 10.1089/cmb.2012.0021.
View
10.
Roberts S, Zembower T
. Global increases in antibiotic consumption: a concerning trend for WHO targets. Lancet Infect Dis. 2020; 21(1):10-11.
DOI: 10.1016/S1473-3099(20)30456-4.
View
11.
. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. Lancet Public Health. 2022; 7(11):e897-e913.
PMC: 9630253.
DOI: 10.1016/S2468-2667(22)00225-0.
View
12.
Rose W, Rybak M
. Tigecycline: first of a new class of antimicrobial agents. Pharmacotherapy. 2006; 26(8):1099-110.
DOI: 10.1592/phco.26.8.1099.
View
13.
Overbeek R, Olson R, Pusch G, Olsen G, Davis J, Disz T
. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2013; 42(Database issue):D206-14.
PMC: 3965101.
DOI: 10.1093/nar/gkt1226.
View
14.
Babaei S, Haeili M
. Evaluating the performance characteristics of different antimicrobial susceptibility testing methodologies for testing susceptibility of gram-negative bacteria to tigecycline. BMC Infect Dis. 2021; 21(1):709.
PMC: 8314565.
DOI: 10.1186/s12879-021-06338-7.
View
15.
Zhang Z, Zhan Z, Shi C
. International Spread of Tet(X4)-Producing Isolates. Foods. 2022; 11(14).
PMC: 9320811.
DOI: 10.3390/foods11142010.
View
16.
Page A, Cummins C, Hunt M, Wong V, Reuter S, Holden M
. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015; 31(22):3691-3.
PMC: 4817141.
DOI: 10.1093/bioinformatics/btv421.
View
17.
Kurekci C, Lu X, Celil B, Disli H, Mohsin M, Wang Z
. Emergence and Characterization of Tigecycline Resistance Gene (X4) in ST609 Escherichia coli Isolates from Wastewater in Turkey. Microbiol Spectr. 2022; 10(4):e0073222.
PMC: 9431179.
DOI: 10.1128/spectrum.00732-22.
View
18.
Sun J, Chen C, Cui C, Zhang Y, Liu X, Cui Z
. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nat Microbiol. 2019; 4(9):1457-1464.
PMC: 6707864.
DOI: 10.1038/s41564-019-0496-4.
View
19.
Fu Y, Liu D, Song H, Liu Z, Jiang H, Wang Y
. Development of a Multiplex Real-Time PCR Assay for Rapid Detection of Tigecycline Resistance Gene (X) Variants from Bacterial, Fecal, and Environmental Samples. Antimicrob Agents Chemother. 2020; 64(4).
PMC: 7179268.
DOI: 10.1128/AAC.02292-19.
View
20.
Bartha N, Soki J, Urban E, Nagy E
. Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations. Int J Antimicrob Agents. 2011; 38(6):522-5.
DOI: 10.1016/j.ijantimicag.2011.07.010.
View