6.
Roers A, Hiller B, Hornung V
. Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity. 2016; 44(4):739-54.
DOI: 10.1016/j.immuni.2016.04.002.
View
7.
Civril F, Deimling T, de Oliveira Mann C, Ablasser A, Moldt M, Witte G
. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013; 498(7454):332-7.
PMC: 3768140.
DOI: 10.1038/nature12305.
View
8.
Hooy R, Sohn J
. The allosteric activation of cGAS underpins its dynamic signaling landscape. Elife. 2018; 7.
PMC: 6211831.
DOI: 10.7554/eLife.39984.
View
9.
Namjou B, Kothari P, Kelly J, Glenn S, Ojwang J, Adler A
. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 2011; 12(4):270-9.
PMC: 3107387.
DOI: 10.1038/gene.2010.73.
View
10.
Okude H, Ori D, Kawai T
. Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Front Immunol. 2021; 11:625833.
PMC: 7902034.
DOI: 10.3389/fimmu.2020.625833.
View
11.
Lee-Kirsch M, Gong M, Chowdhury D, Senenko L, Engel K, Lee Y
. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007; 39(9):1065-7.
DOI: 10.1038/ng2091.
View
12.
Leeson P, Bento A, Gaulton A, Hersey A, Manners E, Radoux C
. Target-Based Evaluation of "Drug-Like" Properties and Ligand Efficiencies. J Med Chem. 2021; 64(11):7210-7230.
PMC: 7610969.
DOI: 10.1021/acs.jmedchem.1c00416.
View
13.
Luecke S, Holleufer A, Christensen M, Jonsson K, Boni G, Sorensen L
. cGAS is activated by DNA in a length-dependent manner. EMBO Rep. 2017; 18(10):1707-1715.
PMC: 5623850.
DOI: 10.15252/embr.201744017.
View
14.
Gao P, Ascano M, Wu Y, Barchet W, Gaffney B, Zillinger T
. Cyclic [G(2',5')pA(3',5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013; 153(5):1094-107.
PMC: 4382009.
DOI: 10.1016/j.cell.2013.04.046.
View
15.
Laurence C, Brameld K, Graton J, Le Questel J, Renault E
. The pK(BHX) database: toward a better understanding of hydrogen-bond basicity for medicinal chemists. J Med Chem. 2009; 52(14):4073-86.
DOI: 10.1021/jm801331y.
View
16.
Skopelja-Gardner S, An J, Elkon K
. Role of the cGAS-STING pathway in systemic and organ-specific diseases. Nat Rev Nephrol. 2022; 18(9):558-572.
PMC: 9214686.
DOI: 10.1038/s41581-022-00589-6.
View
17.
Sure R, Grimme S
. Corrected small basis set Hartree-Fock method for large systems. J Comput Chem. 2013; 34(19):1672-85.
DOI: 10.1002/jcc.23317.
View
18.
Tan J, Wu B, Chen T, Fan C, Zhao J, Xiong C
. Synthesis and Pharmacological Evaluation of Tetrahydro-γ-carboline Derivatives as Potent Anti-inflammatory Agents Targeting Cyclic GMP-AMP Synthase. J Med Chem. 2021; 64(11):7667-7690.
DOI: 10.1021/acs.jmedchem.1c00398.
View
19.
Vincent J, Adura C, Gao P, Luz A, Lama L, Asano Y
. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nat Commun. 2017; 8(1):750.
PMC: 5622107.
DOI: 10.1038/s41467-017-00833-9.
View
20.
Hawkins P, Skillman A, Warren G, Ellingson B, Stahl M
. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model. 2010; 50(4):572-84.
PMC: 2859685.
DOI: 10.1021/ci100031x.
View