» Articles » PMID: 39609565

Evaluation of Large Language Models for Discovery of Gene Set Function

Overview
Journal Nat Methods
Date 2024 Nov 28
PMID 39609565
Authors
Affiliations
Soon will be listed here.
Abstract

Gene set enrichment is a mainstay of functional genomics, but it relies on gene function databases that are incomplete. Here we evaluate five large language models (LLMs) for their ability to discover the common functions represented by a gene set, supported by molecular rationale and a self-confidence assessment. For curated gene sets from Gene Ontology, GPT-4 suggests functions similar to the curated name in 73% of cases, with higher self-confidence predicting higher similarity. Conversely, random gene sets correctly yield zero confidence in 87% of cases. Other LLMs (GPT-3.5, Gemini Pro, Mixtral Instruct and Llama2 70b) vary in function recovery but are falsely confident for random sets. In gene clusters from omics data, GPT-4 identifies common functions for 45% of cases, fewer than functional enrichment but with higher specificity and gene coverage. Manual review of supporting rationale and citations finds these functions are largely verifiable. These results position LLMs as valuable omics assistants.

Citing Articles

Emergency Medicine Assistants in the Field of Toxicology, Comparison of ChatGPT-3.5 and GEMINI Artificial Intelligence Systems.

Bedel H, Bedel C, Selvi F, Zortuk O, Karanci Y Acta Med Litu. 2025; 31(2):294-301.

PMID: 40060265 PMC: 11887820. DOI: 10.15388/Amed.2024.31.2.18.


Evaluating the advancements in protein language models for encoding strategies in protein function prediction: a comprehensive review.

Chen J, Wang J, Hu Y, Li X, Qian Y, Song C Front Bioeng Biotechnol. 2025; 13:1506508.

PMID: 39906415 PMC: 11790633. DOI: 10.3389/fbioe.2025.1506508.


Transitioning from wet lab to artificial intelligence: a systematic review of AI predictors in CRISPR.

Abbasi A, Asim M, Dengel A J Transl Med. 2025; 23(1):153.

PMID: 39905452 PMC: 11796103. DOI: 10.1186/s12967-024-06013-w.


Evaluation of large language models for discovery of gene set function.

Hu M, Alkhairy S, Lee I, Pillich R, Fong D, Smith K Nat Methods. 2024; 22(1):82-91.

PMID: 39609565 PMC: 11725441. DOI: 10.1038/s41592-024-02525-x.


A PERTURBATION CELL ATLAS OF HUMAN INDUCED PLURIPOTENT STEM CELLS.

Nourreddine S, Doctor Y, Dailamy A, Forget A, Lee Y, Chinn B bioRxiv. 2024; .

PMID: 39574586 PMC: 11580897. DOI: 10.1101/2024.11.03.621734.


References
1.
Zeeberg B, Feng W, Wang G, Wang M, Fojo A, Sunshine M . GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003; 4(4):R28. PMC: 154579. DOI: 10.1186/gb-2003-4-4-r28. View

1.
Tirmizi S, Aitken S, Moreira D, Mungall C, Sequeda J, Shah N . Mapping between the OBO and OWL ontology languages. J Biomed Semantics. 2011; 2 Suppl 1:S3. PMC: 3105495. DOI: 10.1186/2041-1480-2-S1-S3. View

2.
Beissbarth T, Speed T . GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics. 2004; 20(9):1464-5. DOI: 10.1093/bioinformatics/bth088. View

3.
Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-50. PMC: 1239896. DOI: 10.1073/pnas.0506580102. View

4.
Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, Elnakady Y . GeneTrail--advanced gene set enrichment analysis. Nucleic Acids Res. 2007; 35(Web Server issue):W186-92. PMC: 1933132. DOI: 10.1093/nar/gkm323. View