6.
  
    Shouval R, Hadanny A, Shlomo N, Iakobishvili Z, Unger R, Zahger D
    
    . Machine learning for prediction of 30-day mortality after ST elevation myocardial infraction: An Acute Coronary Syndrome Israeli Survey data mining study. Int J Cardiol. 2017; 246:7-13.
    
          DOI: 10.1016/j.ijcard.2017.05.067.
    
    
View
   
 
                                          
  7.
  
    Corey K, Kashyap S, Lorenzi E, Lagoo-Deenadayalan S, Heller K, Whalen K
    
    . Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study. PLoS Med. 2018; 15(11):e1002701.
          PMC: 6258507.
    
          DOI: 10.1371/journal.pmed.1002701.
    
    
View
   
 
                                          
  8.
  
    Eltorai A
    
    . Malpractice litigation in cardiac surgery: Alleged injury mechanisms and outcomes. J Card Surg. 2019; 34(5):323-328.
    
          DOI: 10.1111/jocs.14026.
    
    
View
   
 
                                          
  9.
  
    Cooper J, Minneci P, Deans K
    
    . Postoperative neonatal mortality prediction using superlearning. J Surg Res. 2017; 221:311-319.
    
          DOI: 10.1016/j.jss.2017.09.002.
    
    
View
   
 
                                          
  10.
  
    Weng S, Vaz L, Qureshi N, Kai J
    
    . Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches. PLoS One. 2019; 14(3):e0214365.
          PMC: 6436798.
    
          DOI: 10.1371/journal.pone.0214365.
    
    
View
   
 
                                          
  11.
  
    AlAref S, Singh G, van Rosendael A, Kolli K, Ma X, Maliakal G
    
    . Determinants of In-Hospital Mortality After Percutaneous Coronary Intervention: A Machine Learning Approach. J Am Heart Assoc. 2019; 8(5):e011160.
          PMC: 6474922.
    
          DOI: 10.1161/JAHA.118.011160.
    
    
View
   
 
                                          
  12.
  
    Jalali A, Lonsdale H, Do N, Peck J, Gupta M, Kutty S
    
    . Deep Learning for Improved Risk Prediction in Surgical Outcomes. Sci Rep. 2020; 10(1):9289.
          PMC: 7283236.
    
          DOI: 10.1038/s41598-020-62971-3.
    
    
View
   
 
                                          
  13.
  
    Mansoor H, Elgendy I, Segal R, Bavry A, Bian J
    
    . Risk prediction model for in-hospital mortality in women with ST-elevation myocardial infarction: A machine learning approach. Heart Lung. 2017; 46(6):405-411.
    
          DOI: 10.1016/j.hrtlng.2017.09.003.
    
    
View
   
 
                                          
  14.
  
    Podda M, Bacciu D, Micheli A, Bellu R, Placidi G, Gagliardi L
    
    . A machine learning approach to estimating preterm infants survival: development of the Preterm Infants Survival Assessment (PISA) predictor. Sci Rep. 2018; 8(1):13743.
          PMC: 6137213.
    
          DOI: 10.1038/s41598-018-31920-6.
    
    
View
   
 
                                          
  15.
  
    Awan S, Bennamoun M, Sohel F, Sanfilippo F, Dwivedi G
    
    . Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics. ESC Heart Fail. 2019; 6(2):428-435.
          PMC: 6437443.
    
          DOI: 10.1002/ehf2.12419.
    
    
View
   
 
                                          
  16.
  
    Ruiz-Fernandez D, Monsalve Torra A, Soriano-Paya A, Marin-Alonso O, Triana Palencia E
    
    . Aid decision algorithms to estimate the risk in congenital heart surgery. Comput Methods Programs Biomed. 2016; 126:118-27.
    
          DOI: 10.1016/j.cmpb.2015.12.021.
    
    
View
   
 
                                          
  17.
  
    Bertsimas D, Zhuo D, Dunn J, Levine J, Zuccarelli E, Smyrnakis N
    
    . Adverse Outcomes Prediction for Congenital Heart Surgery: A Machine Learning Approach. World J Pediatr Congenit Heart Surg. 2021; 12(4):453-460.
    
          DOI: 10.1177/21501351211007106.
    
    
View
   
 
                                          
  18.
  
    Modell B, Darlison M, Malherbe H, Moorthie S, Blencowe H, Mahaini R
    
    . Congenital disorders: epidemiological methods for answering calls for action. J Community Genet. 2018; 9(4):335-340.
          PMC: 6167263.
    
          DOI: 10.1007/s12687-018-0390-4.
    
    
View
   
 
                                          
  19.
  
    Tirado J, Mauricio D
    
    . Bruise dating using deep learning. J Forensic Sci. 2020; 66(1):336-346.
          PMC: 7821214.
    
          DOI: 10.1111/1556-4029.14578.
    
    
View
   
 
                                          
  20.
  
    Nanayakkara S, Fogarty S, Tremeer M, Ross K, Richards B, Bergmeir C
    
    . Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study. PLoS Med. 2018; 15(11):e1002709.
          PMC: 6267953.
    
          DOI: 10.1371/journal.pmed.1002709.
    
    
View