Rahman A, Rahman M
BMC Public Health. 2025; 25(1):360.
PMID: 39881228
PMC: 11776272.
DOI: 10.1186/s12889-025-21460-w.
Mauricio D, Cardenas-Grandez J, Uribe Godoy G, Rodriguez Mallma M, Maculan N, Mascaro P
J Clin Med. 2024; 13(22).
PMID: 39598016
PMC: 11595128.
DOI: 10.3390/jcm13226872.
Arabi Belaghi R
Sci Rep. 2024; 14(1):21967.
PMID: 39304672
PMC: 11415355.
DOI: 10.1038/s41598-024-60097-4.
Das S, Erdman L, Brals D, Boczek B, Hasan S, Massara P
BMJ Paediatr Open. 2024; 8(1).
PMID: 39038911
PMC: 11409392.
DOI: 10.1136/bmjpo-2023-002365.
Tesfie T, Anlay D, Abie B, Chekol Y, Gelaw N, Tebeje T
BMC Pregnancy Childbirth. 2024; 24(1):139.
PMID: 38360591
PMC: 10868119.
DOI: 10.1186/s12884-024-06306-4.
Prediction of Postnatal Growth Failure in Very Low Birth Weight Infants Using a Machine Learning Model.
Yoon S, Kim D, Park S, Han J, Lim J, Shin J
Diagnostics (Basel). 2023; 13(24).
PMID: 38132211
PMC: 10743090.
DOI: 10.3390/diagnostics13243627.
Comparative effectiveness of explainable machine learning approaches for extrauterine growth restriction classification in preterm infants using longitudinal data.
Cho K, Kim E, Kim J, Yun C, Jang J, Kasani P
Front Med (Lausanne). 2023; 10:1166743.
PMID: 38093981
PMC: 10716334.
DOI: 10.3389/fmed.2023.1166743.
The past, current, and future of neonatal intensive care units with artificial intelligence: a systematic review.
Keles E, Bagci U
NPJ Digit Med. 2023; 6(1):220.
PMID: 38012349
PMC: 10682088.
DOI: 10.1038/s41746-023-00941-5.
Preliminary insights into RNA in CSF of pediatric SMA patients after 6 months of nusinersen.
Garofalo M, Bonanno S, Marcuzzo S, Pandini C, Scarian E, Dragoni F
Biol Direct. 2023; 18(1):57.
PMID: 37705059
PMC: 10498611.
DOI: 10.1186/s13062-023-00413-6.
Predictive analytics in smart healthcare for child mortality prediction using a machine learning approach.
Iqbal F, Satti M, Irshad A, Shah M
Open Life Sci. 2023; 18(1):20220609.
PMID: 37465102
PMC: 10350886.
DOI: 10.1515/biol-2022-0609.
Machine Learning Methods for Pregnancy and Childbirth Risk Management.
Kopanitsa G, Metsker O, Kovalchuk S
J Pers Med. 2023; 13(6).
PMID: 37373964
PMC: 10303735.
DOI: 10.3390/jpm13060975.
Prediction of extubation failure among low birthweight neonates using machine learning.
Natarajan A, Lam G, Liu J, Beam A, Beam K, Levin J
J Perinatol. 2023; 43(2):209-214.
PMID: 36611107
PMC: 10348822.
DOI: 10.1038/s41372-022-01591-3.
On usage of artificial intelligence for predicting mortality during and post-pregnancy: a systematic review of literature.
da Silva Rocha E, de Morais Melo F, de Mello M, Figueiroa B, Sampaio V, Takako Endo P
BMC Med Inform Decis Mak. 2022; 22(1):334.
PMID: 36536413
PMC: 9764498.
DOI: 10.1186/s12911-022-02082-3.
Antenatal prediction models for outcomes of extremely and very preterm infants based on machine learning.
Ushida T, Kotani T, Baba J, Imai K, Moriyama Y, Nakano-Kobayashi T
Arch Gynecol Obstet. 2022; 308(6):1755-1763.
PMID: 36502513
DOI: 10.1007/s00404-022-06865-x.
Development of a peripheral blood transcriptomic gene signature to predict bronchopulmonary dysplasia.
Moreira A, Tovar M, Smith A, Lee G, Meunier J, Cheema Z
Am J Physiol Lung Cell Mol Physiol. 2022; 324(1):L76-L87.
PMID: 36472344
PMC: 9829478.
DOI: 10.1152/ajplung.00250.2022.
Multiomics, artificial intelligence, and precision medicine in perinatology.
Pammi M, Aghaeepour N, Neu J
Pediatr Res. 2022; 93(2):308-315.
PMID: 35804156
PMC: 9825681.
DOI: 10.1038/s41390-022-02181-x.
Artificial Intelligence in NICU and PICU: A Need for Ecological Validity, Accountability, and Human Factors.
Choudhury A, Urena E
Healthcare (Basel). 2022; 10(5).
PMID: 35628089
PMC: 9140402.
DOI: 10.3390/healthcare10050952.
Application of machine learning methods for predicting infant mortality in Rwanda: analysis of Rwanda demographic health survey 2014-15 dataset.
Mfateneza E, Rutayisire P, Biracyaza E, Musafiri S, Mpabuka W
BMC Pregnancy Childbirth. 2022; 22(1):388.
PMID: 35509018
PMC: 9066935.
DOI: 10.1186/s12884-022-04699-8.
Machine Learning Models for Predicting Mortality in 7472 Very Low Birth Weight Infants Using Data from a Nationwide Neonatal Network.
Do H, Moon K, Jin H
Diagnostics (Basel). 2022; 12(3).
PMID: 35328178
PMC: 8947011.
DOI: 10.3390/diagnostics12030625.
A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a retrospective study.
Amodeo I, De Nunzio G, Raffaeli G, Borzani I, Griggio A, Conte L
PLoS One. 2021; 16(11):e0259724.
PMID: 34752491
PMC: 8577746.
DOI: 10.1371/journal.pone.0259724.