6.
Zhang Q, Yan Z, Meng Y, Hong X, Shao G, Ma J
. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021; 8(1):48.
PMC: 8425997.
DOI: 10.1186/s40779-021-00343-2.
View
7.
Luong H, Thanh T, Tran T
. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci. 2020; 260:118407.
PMC: 7486823.
DOI: 10.1016/j.lfs.2020.118407.
View
8.
Erdem Buyukkiraz M, Kesmen Z
. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J Appl Microbiol. 2021; 132(3):1573-1596.
DOI: 10.1111/jam.15314.
View
9.
Serral F, Castello F, Sosa E, Pardo A, Palumbo M, Modenutti C
. From Genome to Drugs: New Approaches in Antimicrobial Discovery. Front Pharmacol. 2021; 12:647060.
PMC: 8219968.
DOI: 10.3389/fphar.2021.647060.
View
10.
Zou J, Jiang H, Cheng H, Fang J, Huang G
. Strategies for screening, purification and characterization of bacteriocins. Int J Biol Macromol. 2018; 117:781-789.
DOI: 10.1016/j.ijbiomac.2018.05.233.
View
11.
Zhang Z, Zhu S
. Comparative genomics analysis of five families of antimicrobial peptide-like genes in seven ant species. Dev Comp Immunol. 2012; 38(2):262-74.
DOI: 10.1016/j.dci.2012.05.003.
View
12.
Martin-Alonso S, Frutos-Beltran E, Menendez-Arias L
. Reverse Transcriptase: From Transcriptomics to Genome Editing. Trends Biotechnol. 2020; 39(2):194-210.
DOI: 10.1016/j.tibtech.2020.06.008.
View
13.
Burdukiewicz M, Sidorczuk K, Rafacz D, Pietluch F, Chilimoniuk J, Rodiger S
. Proteomic Screening for Prediction and Design of Antimicrobial Peptides with AmpGram. Int J Mol Sci. 2020; 21(12).
PMC: 7352166.
DOI: 10.3390/ijms21124310.
View
14.
Aminov R
. Metabolomics in antimicrobial drug discovery. Expert Opin Drug Discov. 2022; 17(9):1047-1059.
DOI: 10.1080/17460441.2022.2113774.
View
15.
Bakare O, Gokul A, Fadaka A, Wu R, Niekerk L, Barker A
. Plant Antimicrobial Peptides (PAMPs): Features, Applications, Production, Expression, and Challenges. Molecules. 2022; 27(12).
PMC: 9229691.
DOI: 10.3390/molecules27123703.
View
16.
Lima A, Azevedo M, Sousa L, Oliveira N, Andrade C, Freitas C
. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications. Int J Biol Macromol. 2022; 214:10-21.
DOI: 10.1016/j.ijbiomac.2022.06.043.
View
17.
Li J, Hu S, Jian W, Xie C, Yang X
. Plant antimicrobial peptides: structures, functions, and applications. Bot Stud. 2021; 62(1):5.
PMC: 8085091.
DOI: 10.1186/s40529-021-00312-x.
View
18.
Lima R, Rathod B, Tiricz H, Howan D, Al Bouni M, Jenei S
. Legume Plant Peptides as Sources of Novel Antimicrobial Molecules Against Human Pathogens. Front Mol Biosci. 2022; 9:870460.
PMC: 9218685.
DOI: 10.3389/fmolb.2022.870460.
View
19.
Alhhazmi A, Alluhibi S, Alhujaily R, Alenazi M, Aljohani T, Al-Jazzar A
. Novel antimicrobial peptides identified in legume plant, . Microbiol Spectr. 2024; 12(2):e0182723.
PMC: 10845954.
DOI: 10.1128/spectrum.01827-23.
View
20.
Wang X, He L, Huang Z, Zhao Q, Fan J, Tian Y
. Isolation, identification and characterization of a novel antimicrobial peptide from Moringa oleifera seeds based on affinity adsorption. Food Chem. 2022; 398:133923.
DOI: 10.1016/j.foodchem.2022.133923.
View