Locking-Fluorescence Signals Regulated CRISPR/Cas12a Biosensor Based on Metal-Organic Framework for Sensitive Detection of
Overview
Authors
Affiliations
The efficient, sensitive, and rapid detection of () in food and food products is important to ensure food safety and health. This study developed a fluorescence biosensing assay that integrated recombinase-aided amplification (RAA) and CRISPR/Cas12a with a zeolitic imidazolate framework-8@fluorescein sodium (ZIF-8@FLS) nanocomposite for the sensitive detection of . In this approach, using RAA as a preamplification module, CRISPR/Cas12a-AChE as a target recognition and dual-enzyme cascade amplification module, and the prepared ZIF-8@FLS with high porosity and rapid pH responsiveness as a fluorescence signal explosive amplification module, the RAA-CRISPR/Cas12a-ZIF-8@FLS biosensor was constructed. Under optimal conditions, it exhibited an excellent linear relationship for , with a sensitive detection limit as low as 1.3 × 10 CFU/mL and could complete sample detection within 2 h relying on the RAA and ZIF-8@FLS explosive fluorescence rapid response, demonstrating its significant advantages in specificity, sensitivity, and reliability in food-borne pathogens detection.